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%e argue that ~hen a short-range spin-glass system is belo~ its lo~er critical dimension dI, which
seems to be the case for isotropic vector spins in three dimensions, then the corresponding
Ruderman-Kittel-Kasuya- Yosida (RKKY) system is in a different universality class and at its lower
critical dimension. For dimensions greater than d~, the RKKY and short-range systems have the
same critical behavior. This appears to apply to Ising spins, and to anisotropic vector-spin models
for which ~e discuss the dependence of T, on anisotropy.
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The experimental evidence for a phase transition in
spin-glasses is now fairly convincing. In addition, the
numerical studies of Ising spin-glasses also strongly
suggest that a phase transition takes place in three-
dimensional systems. However, very similar numeri-
cal studies of XY and Heisenberg spin-glasses indicate
that there is no transition in short-range vector systems
in three dimensions, and that three dimensions is
beiow the lower critical dimensions, dt, of short-range
systems. Short-range interactions are appropriate for
insulating spin-glasses such as Eu„Sri S. Since most
of the best-studied spin-glasses are Heisenberg-type
systems in which the anisotropy (whether it be
Dzyaloshinskii-Moriya or dipolar) is very small (e.g. ,
CuMn, AgMn, Eu„Sri „S), it is not immediately obvi-
ous how to reconcile the experimental work with the
numerical results on vector spin-glasses. In this paper
we demonstrate that for the Ruderman-Kittel-Ka-
suya-Yosida (RKKY) coupling pertinent to metallic
spin-glasses6 the spin interactions are sufficiently
long-ranged that the isotropic vector spin glass in t-hree

dimensions is at its lower critical dimension, d", and so lies
in a diferent universality class from the case of short-
range interactions. For the nonmetallic and probably
also the metallic case, the dependence of T, on the an-
isotropy D is such that as D 0, T, 0, but so slowly
that the experimentally observed values of T, are com-

patible with our expressions for realistic values of the
anisotropy. We also show that the critical exponents
associated with the Ising-type transition in anisotropic
systems are always those of the short-range Ising
spin-glass.

An appropriate Hamiltonian for metallic spin-glasses

4 ——Txt&JtjggtSt S~,

where the spin-spin coupling is of the RKKY form

Jtt =J cos(2kFRtt)/R&~, R& = ~r; —
r& ~; (2)

kF is the Fermi wave vector of the conduction elec-
trons, rt is the position of the spin S,, which will be re-
garded here as a classical Heisenberg spin. The g; are
independent, quenched, random variables equal to 1

or 0 with probabilities c and 1 —c, respectively, with c
the atomic concentration of the magnetic ions carrying
the spin. 7 We shall study here also the general case of
long-range interactions in a variety of dimensionalities
dand generalize Eq. (2) to

Jt/ =J cos(2kFR0) jR t"+~i (3)

Equation (2) is the special case of d=3=cr. It has
been shown elsewhere7 s that after use of the well-
known replica method to carry out the average over
the site disorder, the following Landau-Ginzburg-
Wilson Hamiltonian results:

2J2—P~= — X X(r + sk + lk )g tt (k) Q tI ( —k)

+ —X XXg,j'(k, )gg"(k )Q,", ( —k —k )+0(g'). (4)
a, P, y kl k2
a, b, c

n, P, and y are replica indices and run from 1 to n (which must be set equal to zero at the end of the calculation);
a, b, and c label spin components and run from 1 to m; m =3 for Heisenberg spins. The term sk2g, ta(k)
&& Q,b~( —k) is present both for long-range (LR) and short-range (SR) interactions whereas the term
lk Q,p(k) Q,bp( —k) only occurs with long-range forces.

The Hamiltonian of Eq. (4) has been extensively studied already ' so we will just outline the results here. The
upper critical dimension for tr & 2 is 6 (the conventional short-range result). " For a (2, the upper critical
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dimension is 3g . %here T, is finite the boundary
between LR and SR regions is given "'0 by the condi-
tion a- = 2 —qsR, sphere ps~ is the exponent q associat-
ed with the short-range fixed point and is negative in

6 —
& dimensions. " To check that this is true even

~hen qsR is negative ~e have studied the correlation
function at T = T„which, in the non-mean-field LR
region (d & 3a.), may be written

G(k) —= (Q,bi'(k) Qg( —k) )

f(n+k +u k ),k~

)(

MF: LR

ll

+
CL
NH

Cd Tc=a
SR

where the correction-to-scaling exponents h. + and A.

are negative but with the larger, A. +, changing sign
when i'd=2 —qsR.

'0 ~i and n2 are the amplitudes of
the eigenvectors corresponding to )i. + and li. , and are
linear combinations of s —s' and w —w', where s and
w" are the fixed-point values of s and w. Using the
equations of Chang and Sak, '0 we have shown that the
crossover function fremains finite as k 0 and hence
that the critical exponent qLR is 2 cr; —in other words,
G(k) = k as k 0 even when o. ) 2 (but
cr ( 2 —qsR). Notice that the bare propagator g(k) at
r =0 takes the form g '(k) =P2J2(sk2+ lk ) and is
dominated by the nonscaling term sk2 as k 0 when
a & 2. In the LR mean field region-(d & 3cr, o & 2)
the exponent gLR will be 2 —a but in the SR mean-
field region (d & 6, o. & 2)qsR will be zero. The
boundary between the two mean-field regions is at
cr = 2. In the LR mean-field region, the exponents are
v = I/o. , y = 1, P —1, etc. , but in the SR mean-field re-
gion, v= —,', y=1, P= 1.

We now turn to the question of the lower critical
dimension. The numerical work of Refs. 3 and 4 sug-
gests that its value for isotropic vector spin-glasses
with short-range forces is close to 4, and this is the
value which was adopted in the preparation of Fig. 1.
Unfortunately, we know of no convincing analytic ar-
gument for determining the lower critical dimension
for short-range forces. However, we shall now argue
that the lower critical dimension can be obtained
analytically where long-range forces dominate.

To proceed, we discuss the case of a zero-
temperature transition. The exponent q, which
governs the decay of spatial correlations, is defined by
G(r) = r ~+ "f(rjg), as r ~ with r/g fixed.
Since at T = 0 the correlations cease to decay in space
(provided that the ground state is nondegenerate), it
follows that

2 vl=d. ()
This is a general result for q at a zero-temperature
transition which applied both for long-range and
short-range forces. The lower critical dimension d' for
long-range forces is now straightforwardly obtained,
provided that one can assume that T, approaches zero

2 5 4 5 6 7
CT'

FIG. 1. Phases of a vector spin-glass in the 1-a plane.
MF denotes a mean-field transition. T, :LR stands for a
finite-temperature phase with exponents in the long-range
universality class, T, = 0 LR denotes the region in which a
zero-temperature phase transition occurs in the long-range
universality class, etc. The cross marks the physical point
d=o. =3 pertinent to the RKKY interaction. The precise
shape of the boundary between the T, =O SR and T, =O LR
regions depends on the form assumed for yT". Here we
tookyP-(4 —d)/2 for 4~ d~2 and ye=1 for d~2.

(JjT)"LR (8)

as T 0, with v""= 1jyTL". If d ( d', then yTL" ) 0,
but if yT" & 0 there is a phase transition at nonzero
temperature, since the effective coupling is an increas-
ing function of the length scale b. The dimension at
which yT""=0 is d', the lower critical dimension for
long-range interactions. Analogous results hold for

as d d". Then the exponents associated with the
transition at T, should smoothly join onto those of the
zero-temperature region. Now qLa = 2 —o at the
finite-temperature transition, and qLR at zero-
temperature transition is 2 —d. These join smoothly
only if

d =(T, (7)
which shows that RKKY systems are at their lower
critical dimension if the long-range fixed point is
stable.

Further support for this result comes from con-
sideration of yrL", the zero-temperature exponent
which determines how the long-range forces between
block spins of linear dimension b scale with b:

@LRJL'R(b)=b T
JLR

[from Eq. (4), one can identify J las JLR ). The phys-
ical significance of yTLR is that it determines the
behavior of the correlation length as T 0 for LR
spin-glasses for d & d" = o, i.e. ,
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I/vLR y LR ((r d)/2 (10)

with use of Eq. (6) for rt Ob. serve that yT«=0 at
d = d' = o., as expected.

We now determine the boundary in the d-(r plane
which separates the long-range zero-temperature
behavior specified by yT« from the short-range zero-
temperature behavior specified by yes". The scaling
expression of Eq. (8) for J«holds in both regions,
but the short-range forces will dominate when
yTs" & yrL" since the long-range forces will be negligi-
ble compared to the short-range forces on sufficiently
large length scales. Thus the boundary between the
two tyPes of behavior is at yes"=yP. For XI'sPins,
m =2, it was suggested in Ref. 4 that yrs" = (4 —d)/2,
if 4 ~ d ~ 2, but that yes" = 1 for d & 2. It is unclear if
this holds for general values of m ) 1, but for con-
venience they have been used in Fig. 1. We now have
all the necessary information to obtain the phase dia-
gram in Fig. 1. Note that the "physical point" d = o = 3
lies on the boundary between long-range zero temper-ature
behavior and lang range f-inite temperature -behavior.
This observation depends on the fact that the lower
critical dimension for short-range isotropic vector
spin-glasses is greater than 3. An analogous figure
can be drawn for Ising spin-glasses (and indeed for any
system). '2 However, since the lower critical dimen-
sion for short-range Ising systems is thought to be less
than 3,2 the point d=(r=3 lies in the short-range,
finite-T, region of the diagram. Thus, Ising spin-
glasses with RKKY interactions lie in the same univer-
sality class as short-range Ising systems. By contrast,
for isotropic Heisenberg models, the RKKY and
short-range systems lie in different universality classes
and have different lower critical dimensions.

We now discuss the effect of anisotropy which, fol-
lowing Ref. 4, we will assume can be written as

~t) = DXKjbS('Sjb, with X—K(~(=0

Both Dzyaloshinskii-Moriya anisotropy and dipolar
coupling can be put into this form. The overall
strength of the anisotropy is specified by D. The tran-
sition will now be Ising-type7 so that RKKY and
short-range systems will be in the same universality
class, but they will have a different dependence of T,
on anisotropy as we shall now show.

short-range interactions. Under the usual type of
renormalization-group transformation k = k'/b,
Qg(k) b' " Q,(I (k'), one deduces that

JI2 ( b) —b2 'g —0' J2

since the coefficient JL2it is only changed by these re-
scaling factors, as at the finite-temperature fixed point.
Hence

We must first extend Eq. (9) to finite temperatures
when the rescaling of QJ (k) is now no longer simply
b' "i2. Setting b=e', we shall assume that Eq. (9)
generalizes for T « JL„(l) to

dJ'«(l)/di= -yrLaJ««) -AT2/J«(l), (12)

where A is a constant expected to be of order unity. A
T /J«(l) term [rather than J«(T/J«), He2] is
written in for the sake of definiteness. McMillan'3 ar-
gued that 8=2 was a consequence of the symmetry
P(J(i) = P( —Jtt) expected for the zero-temperature
bond distribution at the fixed point. [The value of 8
only affects the power of the logarithm in Eq. (13)
below. ) For d=(r-3, yz""-0. The analogous rescal-
ing equation for D is dD(l)//dl=yoD(1) where yt(
was argued to equal d/2. 4 Solving for J(l) and D(l)
with yP =0, and estimating T, from J«( l')
=D(l') = T„we find

[1+(2A/yt()ln( T,/D))'~2

[ln( /D)]'

Equation (13) shows that as D 0, T, 0, but that
for realistic values of J/D( = 100), the transition tem-
perature T, = J.

At the present time we do not believe that it is pos-
sible to refine our estimate of T, to the point where
meaningful comparisons with experimental data such
as that in the work of Vier and Schultz'~ can be made.
This is partly because the spin interactions in real sys-
tems are of greater complexity'5 than envisaged in the
RKKY expression of Eq. (2). Furthermore, at large
separations, the spin interaction may be infiuenced by
the mean-field path, X. If this gives rise to an ex-
ponential factor exp( —R/X), the interaction J(t will
technically be short range. If A../a )) T,/D, where a is
the average spacing between spins, the role played by
X is unimportant and Eq. (13) for T, will still apply.
However, in the opposite limit, the spin interactions
are effectively short-ranged and the formula given for
T, in Ref. 4 will apply, i.e., T/J=l(D/J) with
x = —,', which again implies a weak dependence of T,
on anisotropy, but not as insensitive as in the long-
range limit. This last result should also hold for insu-
lating spin-glasses.

It is also conceivable that isotropic RKKY systems
might have a finite T„analogous to the "marginal"
transition discussed by Anderson and Yuval' for a
long-range one-dimensional Ising ferromagnet, but it
is more likely that T, 0 as D 0. In addition, we
note that Dzyaloshinskii and Volovik'~ have obtained
the result d(=4 for short-range isotropic vector spin-
glasses and d" = 3 for RKKY systems by assuming that
spin-glasses can be represented by a gauge theory.
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The validity of this assumption is hard to assess and is
not made in our work, which proceeds along complete-
ly different lines.

To conclude, all three-dimensional experimental
spin-glass systems should have a phase transition in
the universality class of the short-range Ising spin-
glass model. The dependence of T, on anisotropy is
only logarithmic for metallic spin-glasses with RKKY
interactions. An experimental test of this prediction
would be welcome, but such a check will be complicat-
ed by mean-free-path effects and lack of detailed
knowledge of the precise form of the spin-spin interac-
tion.

After this work was submitted, we became aware of
Monte Carlo simulationsts of an isotropic RKKY
Heisenberg spin-glass model which seem to indicate a
lower critical dimension greater than three. However,
the sizes studied may be too small to see the marginal
behavior predicted here. Also, our Eq. (10) has been
independently derived. '9

We are indebted to A. Aharony and M. E. Fisher for
a useful discussion. One of (A.P.Y.) thanks K. Binder
for bringing Ref. 8 to his attention, and the National
Science Foundation for support through Grant No.
PHY81-15541, and is grateful for support from the As-
pen Center for Physics, where this work was started.

&For recent reviews see K. H. Fischer, Phys. Status Solidi
(b) 116, 357 (1983), and to be published; R. Rammal and
J. Souletie, in Magnetism of Metals and Alloys, edited by
M. Cyrot (North-Holland, New York, 1982); K. Binder and
A. P. Young, to be published.

2A, J. Bray and M. A. Moore, J. Phys. C 17, L463, L613

(1985), and Phys. Rev. B 31, 631 (1985); W. L.McMillan,
Phys. Rev. B 30, 479 (1984), and 31, 340 (1985); R. N.
Bhatt and A. P. Young, Phys. Rev. Lett. 54, 924 (1985);
A. T. Ogielski and I. Morgenstern, Phys. Rev. Lett. 54, 928
(1985).

3R. Banavar and M. Cieplak, Phys. Rev. Lett. 48, 832
(1982); W. L. McMillan, Phys. Rev. B 31, 342 (1985).

48. %. Morris, S. G. Colborne, M. A. Moore, A. J. Bray,
and J. Canisius, J. Phys. C (to be published).

5A. Olive, D. Sherrington, and A. P. Young, unpublished;
S. Jain and A. P. Young, to be published.

6P. M. Levy and A. Fert, Phys. Rev. B 23, 4667 (1981).
7A. J. Bray and M. A. Moore, J. Phys. C 15, 3897 (1982).
sY. Ueno and S. Okamoto, Phys. Lett. 85A, 103 (1981).
96. Kotliar, P. %. Anderson, and D. L. Stein, Phys. Rev.

B 27, 602 (1983).
toM. Chang and J. Sak, Phys. Rev. B 29, 2652 (1984).
~&A. B. Harris, T. C. Lubensky, and J.-L. Chen, Phys. Rev.

Lett. 36, 415 (1976).
t2For example, for ferromagnets Eq. (9) becomes

JL'a(b) = b2 " JLa, giving ljv""=ye=a —d instead of
(10). Since ye=1 —dor 2 —d for Ising or vector ferromag-
nets, respectively, the equation yP=yP, which gives the
boundary between T, =0 LR and T, = 0 SR behavior, be-
comes 0.= 1 for Ising ferromagnets and 0 = 2 for vector fer-
romagnets.

t3W. L. McMillan, J. Phys. C 17, 3179 (1984).
~4D. C. Vier and S. Schultz, Phys. Rev. Lett. 54, 150

(1985).
tsP. M. Levy and Q. Zhang, Phys. Rev. B 33, 665 (1986).
t6P. W. Anderson and G. Yuval, J. Phys. C. 4, 607 (1971).
t7I. E. Dzyaloshinskll and G. E. Volovlk, J. Phys. (Paris)

39, 693 (1978).
~SA. Chakrabarti and C. Dasgupta, Phys. Rev. Lett. 56,

1404 (1986).
~9D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601

(1986).


