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The local structure of S implanted in GaAs has been determined by extended x-ray-absorption
fine structure by monitoring of the S Ko. fluorescence yield. The S first-neighbor shell shows a sig-
nificant static broadening compared to the S second- and third-neighbor shells. This indicates two S
configurations of approximately equal population: (1) substitutional S on an As site and (2) a com-
plex formed by S on an As site and an As vacancy on the second-neighbor shell with a S-first-
neighbor distance relaxation of 0.14+0.04 L. The two-site configuration explains the disparity
between implanted S concentration and net electrical activity.

PACS numbers: 61.10.Lx, 61.70.Bv, 78.50.6e, 78.70.Dm

The physical properties of highly doped III-V semi-
conductors ( ~ 10's atoms/cm3) have attracted much
interest. ' A continuing problem for n type I-II-V semi-
conductors is the formation of donor-related defects
which drastically change the expected physical proper-
ties of these systems. Typical defect-induced features
are persistent photoconductivity and saturation of the
electrical activity with increasing dopant concentra-
tion. 2 Various models of the local structure for defect
centers have been proposed, but so far, the geometri-
cal structure of the impurity atom has not been mea-
sured directly. We report here bond distances and
numbers of atoms in the atomic shells surrounding a
prototypical donor, S in GaAs, obtained by measuring
the extended x-ray-absorption fine structure (EXAFS)
signal from the 1s core level of the S impurity atom. 3

The EXAFS spectra were measured by detection of the
impurity Ka soft-x-ray fluorescence yield (FY). Our
studies cover the concentration range between 2&& 10'9
and 2 x 10zo S-atoms/cm3.

The experiments were performed with use of syn-
chrotron radiation at the Stanford Synchrotron Radia-
tion Laboratory. The fluorescence detector, used to
monitor the S Kct FY, was a custom-made energy-
dispersive proportional counter with a 125-p, m Be win-
dow and an energy resolution of = 800 eV FWHM. 4

The samples were prepared by implanting 100-keV S
ions into undoped GaAs {100). Annealing was per-
formed in a flowing As-H2 ambient at temperatures in
the 700-900'C range. The depth profiles of S were
measored by secondary-ion mass spectrometry and the
electrical activity of the S was determined by Hall ef-
fect and electrochemical capacitance-voltage (C-V)
profiling. In accordance with previous results, s we
found a saturation electron density of = 5 X 10's/cm,
which is at least an order of magnitude less than the
implanted S concentration. Remnant damage was

studied by ion channeling; samples showed a high de-
gree of crystallinity after annealing, with backscatter-
ing yields ( = 4%) close to those of virgin GaAs.

In Fig. 1 we show the S (K edge) photoabsorption
spectra and the EXAFS signal in k space of two GaAs
samples which were implanted with S to doses of
1 X10'5 and 1&&10'6 atoms/cm2 and annealed at 900
'C. The mean concentrations ( n = 2 x 10'9 atoms/cm3
and n =2X 1020 atoms/cm3, respectively) were calcu-
lated with the assumption of Gaussian-type implanta-
tion distributions in agreement with secondary-ion
mass-spectrometry measurements. Measurements of
the S KLL Auger electrons, with escape depth of = 30
A, showed no enrichment of S at the surface. 6 The S
atoms were distributed over a mean depth of = 5000
A from the surface. On the 2X10'9-atoms/cm3 sam-
ple, the S E-edge signal-to-background ratio is 220%.
EXAFS experiments can be performed with signal-to-
background ratios of 10%.4 6 The S Kot absorption
length in GaAs is =1 p, m. The detection sensitivity
limit of soft-x-ray-FY EXAFS can therefore can be
calculated to be (10%/2200/0)x [(0.5 p, m)/(I pm)l
x (2X10t9 atoms/cm3), i.e., 5x10'7 atoms/cm3 for S
impurities in GaAs. Similar arguments apply to other
impurities, such as Si, P, Cl, and Ar, with E edges in
the soft x-ray region.

In Fig. 2 we show the Fourier transform ~F(r) ~
of

the data reported in Fig. 1. Three peaks arise from the
first three atomic-coordination shells around S which
are analyzed by use of experimental phase shifts and
backscattering amplitudes3 from GaS, GeS2, and Cu-
GaSz. Inconsistencies in bond length due to differ-
ences between Cu, Ga, and Ge phase shifts and back-
scattering amplitudes were less than +0.01 A. The
peaks in Fig. 2 arise from Ga and As neighbors and
not from other S atoms as revealed by the k-space
maximum of the backscattering amplitude. Each
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FlG. l. S (& edge) photoabsorption spectrum and EX-
AFS signal after background removal, transformation to k
space, and multiplication by k' (insets) for S implanted in
GaAs (100) at 100 keV and annealed at 900'C. (a)
n =2& 10'9 S-atoms/cm', (b) n =2X10'0 S-atoms/cm'.

bond distance and number of neighbors was obtained
by fitting the backtransformed data of the shell with
the amplitude and phase obtained from the first-
neighbor shell of each standard. The Fourier transfor-
mation interval was chosen to be 2.5-10 A '. No ap-
preciable changes were observed in the )F(r) ( func-
tion by reducing this interval to 4.0-10 A

The S first-neighbor-shell distance is 2.33+0.03 A
for samples annealed at temperatures above 700'C
and n ranging between 2 x 10'9 and 2 x 102o atoms/cm3.
This distance is 0.12 A shorter than in GaAs (2.445
A). However, the S second- and third-neighbor-shell
distances (3.98 +0.03 and 4.68 +0.03 A) are identical
with GaAs (3.990 and 4.679 A). These results
demonstrate that the S atoms are substitutional and
rule out models with interstitial or clustered S atoms
behaving as nonelectrically active defects. 2 The con-
traction of the S first-neighbor distance may be expect-
ed because the S—Ga or S—As bonds are typically
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FlG. 2. Fourier-transform magnitude !F(r)!of the EX-
AFS signal shown in the inset of Fig. 1 (solid line, 2 & 10'0
S-atoms/cm3; dashed line 2x10'9 atoms/cm3). Bond dis-
tances obtained from the one-shell analysis of the first three
shells around the S atom are indicated.

= 0.15 A shorter than the Ga-As bond; however, the
first-neighbor-shell EXAFS parameters show some
anomalies with respect to those of the outer shells.
The number of first-shell neighbors is 2.6 instead of 4
as expected for substitutional S atoms and the first-
neighbor-shell Debye-Wailer factor is physically too
large when compared with that of the second- and
third-neighbor shells. Another unusual feature is the
width of the first-neighbor-shell peak in the ~F(r)

~

transform function which has FWHM 0.13 A wider
than the second- and third-neighbor-shell widths. This
point is illustrated in Fig. 3 for the data of the 2X 1020-
atoms/cm3 sample. A first-neighbor shell wider than

I l I I I I l I I I I I I I I
l

I I I I l l I i I I l I I I I l I

a)
FTHM ~: o.ask

Io—

l I i « I I

2 4

4—

c)
FTHM~
0.56 A

2:

I—

l I I I i I I

2 4 62 4
DISTANCE, R ILI

b)
PhfHM +

0.55 A

FIG. 3. Fourier filtered magnitude of the (a) first-, (b)
second-, and (c) third-Iieighbor-shell peaks of the Fourier
transform shown in Fig. 2 ( n = 2 x 1020 atomslcm').
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the outer shells means that there are interactions af-

fecting the local structural configuration of the atoms
closer to the S but not the position of the S with

respect to the rest of the lattice. We checked this idea

by comparing the widths of the first-, second-, and
third-neighbor-shell Fourier-transformed EXAFS
peaks in the ~F(r) ( of Ga and As in GaAs. s In this
system second- and third-neighbor-shell peak widths
are 0.55 A FWHM, consistent with our results, but the
first-neighbor-shell width is 0.45 A FWHM, which is
0.23 A narrower than our case.

This effect cannot be explained by a single substitu-
tional site for the S atoms but it can be explained by
two different substitutional configurations which are
characterized by different first-neighbor relaxations
and by relatively unperturbed second- and third-

neighbor shells. The two S site configurations are (1)
= 50'/0 of S atoms on As sites with 4 Ga first neigh-
bors at 2.43 +0.04 A (S„,) and (2) = 50'/0 of S atoms
on As sites with an As vacancy on the second-neighbor
shell and 4 Ga first neighbors at 2.31+0.04 A (SA„
VA, ). The first-neighbor-shell filtered experimental
data and the least-squares best fits with one and two
configurations (dashed and solid line, respectively) are
reported in Fig. 4. The fit with two configurations de-
creased the statistical X2 and residual values by a factor
of 30. The two configurations have equal concentra-
tion to within +20%, each with 4 nearest-neighbor
atoms and bond distances of 2.31 and 2.43 A. The un-

certainty on these distances is given conservatively as
+0.04 A. Another conclusive aspect of this model is

that the Debye-Wailer factors of the two configura-
tions are the same as for the S second- and third-
neighbor shells and the GaS standard to within 10%,
whereas the single-configuration fit requires an
anomalously large and unphysical Debye-Wailer factor.

Our EXAFS results show that the S is on the As site
with or without an As vacancy on the second shell [S~,
or (S„„V„,)]. A missing As atom on the second-
neighbor shell implies four broken bonds, one on a Ga
atom of the first-neighbor shell, two on two Ga atoms
of the third-neighbor shell, and one on a Ga atom on
the fifth-neighbor shell. Therefore the As vacancy is a
weak perturbation on the eleven second-neighbor-shell
As atoms and on ten of the twelve third-neighbor-shell
Ga atoms, which do not have broken bonds. Howev-
er, the first-neighbor-shell Ga atom with a broken
bond will cause a contraction of the average S-Ga dis-
tance. Therefore we assign the value of 2.31 +0.04 A

to the S—Ga bond of this complex. Moreover the
remaining eleven bonds between the first-neighbor-
shell Ga and second-neighbor-shell As constrain the S
first-neighbor shell so that the S atom is close to a sub-
stitutional site and the second- and third-neighbor S
shells are relatively unperturbed with respect to the
GaAs lattice.
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It could be argued that the S is equally distributed
on As (SA, ) (unrelaxed configuration, S—Ga bond
2.43 A) and Ga (So,) (relaxed configuration, S—As
bond 2.31 A) sites. However, this arrangement is

ruled out by specific lattice-site-location measurements
performed on implanted samples similar to ours, using
the channeling technique, which show S to be uniquely
on As sites. Moreover, electrical activity would not
saturate in the So, +SA, model as SG, is a double
donor. In contrast, electrical-activity measurements
are consistent with the As-vacancy model where the

(S„, VA, ) complex is an acceptor' that will compen-
sate the donor S„,. Therefore, with two species

K (A-'j

FIG. 4. S first-neighbor-shell filtered data (dots) with

one- and two-configuration fits for the 8 = 2 x 10
atoms/cm3 S-doped GaAs sample. The fits were obtained
using GaS first-neighbor-shell model amplitude and phase
shift: (a) One-configuration fit with R =2.33 A. and 2.6
neighbors (dashed line) and two-configuration fit with

Ri = 2.31 A„R2=2.43 A and 4 neighbors (solid line); (b)
residual differences between the first-neighbor-shell filtered
data and the one-configuration fit (dashed line) or the two-

configuration fit (solid line). Note the change in vertical

scale from (a) to (b).
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present in roughly equal amounts, the concentration of
net electrically active sites (i.e., uncompensated
donors) should be much smaller than the total S-atom
concentration. Indeed there are experimental observa-
tions which show that the electrical activity changes
when the V„, concentration is altered. The electrical
activity of donors decreases when GaAs crystals are
grown under As-deficient conditions (i.e. , an increase
in VA, ). Moreover, when our samples are coimplant-
ed with As to the same dose and range (i.e. , a decrease
in V„,) the electrical activity increases.

In this work we have demonstrated that EXAFS
measurements using soft-x-ray FY detection are a
powerful tool for the determination of the local defect
environment of impurities in semiconductors. Such
information is crucial for a complete description of
these systems. We have shown that the structure of
implanted S can be correlated with the electrical prop-
erties of S-doped GaAs.
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