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Modular Invariance and One-Loop Finiteness of Five-Point Amplitudes in Type-II
and Heterotic String Theories

C. S. Lam and Da-Xi Li
Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada

(Received 4 March 1986)

%e prove the modular invariance and thus the finiteness of the five-point amplitudes in closed
superstrings. The complicated algebra necessary is considerably simplified by making use of the
results of Frampton, Moxhay, and Ng for the open superstring.

PACS numbers: 11.17+y

It is widely conjectured that superstring theories are
finite, though a general proof does not yet exist. The
basis of this hope is the classical demonstration of the
finiteness of the one-loop four-point functions, for the
SO(32) type-I superstring, ' the type-II closed super-
strings, and the Spin(32)/Zl and ESSES heterotic
strings. l A similar proof for the one-loop M-point
functions, with M & 4, is not straightforward because
of the complexity of the algebra involved. This
lengthy calculation has been accomplished recently for
the M=5 type-I superstring" 5 by Frampton, Moxhay,
and Ng. There are two potential divergences in the

1

type-I open string. The leading one is canceled

between planar and nonplanar diagrams when the
gauge group is SO(32), just like the case for M =4.'
In addition, for M=S, there is also a potential non-
leading divergence, which can be shown after a lengthy
calculation to add up to zero. 5 Our purpose in this
note is to prove the modular invariance, and thus the
ftniteness, of the M= 5 type-II superstring as well as
the Spin(32)IZz and the Esx E8 heterotic strings. For
simplicity we will restrict the external legs to be gauge
bosons, which enables us to make use of the compli-
cated calculations of Refs. 4 and 5.

First, consider a type-II closed superstring. The
M = 5 one-loop amplitude with external momenta k, is
given by

W(1, 2, 3, 4, 5) = (x,, ) ' t (I I+E),

1~i&/~5
5 i-1

U»fn("»') (4)

I, = —X X Wtjlm(v»)/Im~,

where w=z~zzzlz4z5, X J=tX(v», )7, u»=ln(zt+&zt+z6

. . z&)/27ri, and 7 = Inw/zn i In utj and subsequently
in (5), (6), and (29), we treat the indices i, j as cy-
clic, v&z. , z5 = zo, z6 = z~, z7 —= zl, etc. Thus, tf
vt=ln(zlz2 zt)/2ni, then v»=uj —vt ifj &i, but
u»=vj —et+~ ifj ( i The on.ly property we need to
know about X(u, v ) is its behavior under the modular
transformation

(2)

It is2

x(v, v) =171X(v', r') =x(v+1, 7)
= x(P + T, 7').

The function l(vt, 7) =I, +It, +I, +I& can be taken
from Re fs. 4 and 5, with minor modifications. To
study its behavior under (2) we need only to concen-
trate on its ut and v dependences. I is a constant, in-

dependent of vt alld r, alld

Here Utj and W» are constant tensors, with

&a=o
5

X w»=o,

(7a)

(7b)

which are consequences respectively of transversality
of the polarization vector and the conservation of
momentum. The expressions for I„U», and 8'» are
fairly complicated, but can be inferred from the ex-
pressions given in Refs. 4 and 5. Their detailed ex-
pressions will not be necessary for our purpose and
will not be written down.

The planar mode sum function is6

'/f"=X (8)
l 1 —vvt z

provided that v =lnz/2ni and 7 =lnw/2mi. It obeys
the relations

f (O, ) =1, f ( —,) = f (, ). (9)—
Similarly, we can get the function Iz by using
Iz(v, , ~) =I&(v,', 7') (A =a, b, c,d) The extra term. E
in (1) has the form

Ig = x x W~~f (v tj, 7 ) . (6)
E= V/Imr,
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~here Vis a constant.
We give here a brief explanation of Eq. (1). Every-

thing is worked out in Ref. 2, except for the factor
(I I +E). Let S„and n„(S„and n„) be the right-
golllg (left-golllg) ferIIlioll aIld boson oscillator Illodes,
and Roj =So y'~ So (ROJ =So y" So) be the So- (So-)
dependent part of the vertex operators. For M=4,
the term corresponding to (I I+ E) is proportional to
the So, So traces of RO~RO. For M=5, there are four
types of terms each4 ~ for the right-going and the left-
going parts. They are (a) R05, (b) R03 (S„SO)2, (c)
R04p, and (d) R04n„(na0) W. hen traces over So are
taken, and when corrections to the S„ traces (b), n„

traces (d), and internal loop momentum integration
(c) are taken into account, we get the four terms I„
(A =a —d) in (4)—(6). Similarly we get lz when we
consider the left-going modes. For right- (left-) going
modes, the open-string variable x; used in Refs. 4 and
5 is replaced by the complex variable z; (zy'), which is
how we obtained Iy, and Id (II, and I„) in (4) and (6).
Incidentally, (7) has been used to display I, and Id in
the forms given by (5) and (6). Now for I, and I, .

The internal momenta pl for the 1th propagator are
common to the right and left modes; there is only one
loop-momentum integration to be done, and not one
each for right and left modes. If p is the loop momen-
tum, then2 p, =p —g,':ilk, and the p integration is

J—= J
d' p lz, l

' =—„'td' pexp[np —2P p+y]=
i=1

exp( y —P'/n )

if no p is involved in the vertex operators. If p comes in linearly, then the corresponding integral with an extra p in
the integrand of (11) is (P/n) J. If p comes in quadratically, then the result is [(P/n) (P/n) —1/2n] J. Note that
the variable x, of the open string is now replaced by lz, l. This is why Eq. (5) involves Im(v) and Im(7), rather
than v, 7, or v', r". This is also why the left-handed modes and the right-handed modes do not quite factorize into
I I; an extra term E in (1) corresponding to the term ( —I/2n) J in the quadratic integral [coming from (c)(c) ]
must be added. Since n in (11) is proportional to Im~, Eis proportional to I/Im7, as indicated in Eq. (10).

Now we return to the proof of modular invariance of (1) under (2). The crucial observation, which we prove at
the end, is that

1(v, , r) = —r Il(vl', r'). (12)
Given this, and Eq. (10), we get

(I I+E)( v~y, ;"v, ')r=l~l '(I 1+E)(v,', T', v,",r"). (13)
Moreover,

1 5 y

5

d ZI

,
i-1

1 --- 2n= d~ dvlnlwl;"; ' Im~

5

(15)

with

y 1

= d'r' d'v'' (14)
Imr'

Thus the additional powers of lv l on the right-hand sides of (13) and (14) cancel each other. Since Xk; k&,
summed over 1» i (j» 5, is zero for external massless states, the factor lr l in (3) makes no contribution. This
proves the invariance of (1) under (2).

For the heterotic string, we take the external particles to be charged gauge bosons. Then the five-point one-loop
amplitude is proportional to

y

A(1, 2, 3, 4, 5)= d z, lwl (X ) ' IT,
,
»lwl, I~y&g~5

y

T(v, , r") = .f(w')
W 1l& J%5

[P(v(q, r") ' '] L(vy', r ). (16)

Here k, and E, are the momenta in the ten-dimensional (external) and sixteen-dimensional (internal) spaces,
respectively, for the ith charged gauge boson. The functions fand Q emerge from the summation of the left-going
(boson) oscillators, and L comes from the lattice sum over the sixteen-dimensional loop momenta. Under the
modular transformation (2), these functions transform as followsz 3:

ItI(v", r') = —~'exp( 7riv'2)I1I(v™,—7"),
w"f ( w')" = w'"f ( w")"/r"" (IS)

L(v,', r") =exp—
2

XILI,&" Q& L( v", 'r) /"1'= epX+ X vJ'K, E, L(v,",v")/v, ,'.1~i & j~5
(19)
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1
U~J

1&i&J&5

Ij~ Q
1%!& J ~@5

From (4), using (21) and (22), we may write

Ig + Ib X V/Jfp (v /J p 7 ) p

l~~ j& J&5

(21)

(22)

(23)

where

f, (v, ~) =f, ( v~)+ —,
' (I —v/~). (24)

Because of (22), the coefficient of the last term in
(24) is not unique. That particular choice, however,
leads to a simple transformation law for f,

f~(v, v) = fp(v', v')/r, — (25)
as we shall now proceed to prove. In terms of the
Jacobi II function 83,7 we can write (8) as

8, (v ——,r ——, ~v)
f, (v, ~) =

2~ &3(v ——,'r ——,
' lr)

Since

(26)

&3(v ~7) = (—i7 ) 'J&exp( —nivz/7)g3(v'/7') (27)
we get

fp(v, 7) =7'f (v', r') + —,
' v' —v' ——,', (28)

from which (25) follows.
Because of (25), I, +Ib has the desired transforma-

tion property of (12). For I, + Id, (5), (6), (7b), and
(24) give

vs Im(viJ)
I, + Iq —— 8'(J fv (v IJ, 7 ) + — —

( )

(29)

Here 0, = $KJ (summed over 1~j~ i —1), Q& =0,
and JL'= InzJ"/( —2+i). In getting to the last form ofJ
(19), momentum conservation gE, =0 has been used.
Since gE & summed over 1 ~ i & j~ 5, is
gE'/2 = —5, we get from (16)—(19) that

T(v,', T') = —7' ' T(v,",T") (20)

In other words, T transforms just like I [see (12)~.
Thus Eq. (15) for the heterotic string is also modular
invariant.

We proceed now to prove the crucial relation (12).
To do this, we make use of the result in Refs. 4 and 5,
which states that the v-independent terms of I, + Ib, as
well as the v-linear terms of I, +lb, add up to zero.
This result is used there to show the absence of the
nonleading divergence of the SO(32) open superstring.
In practice, v independent and v linear correspond to
replacement of f~ (v, ~) in Ib by ——,

'
and v, respective-

ly, and hence this result can be stated as follows:

Now

Im(v')
Im(7 ')

Im(v/7) Im(v)Re(~) —Re(v)lm(7)
Im(1/. ) —Im(~)

Im(v )
Im(~)
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6%'e find it simpler notationally to consider the functions
X, P, and f~ as functions of v and r. In the more standard
notation of Refs. 2 and 3, g and @ are considered as func-
tions of z, and w. In Refs. 4 and 5, f, is considered as a
function of v/lnw and w.

7A. Erdelyi et aI. , Higher Transcendenta) Functions
(McGraw Hill, New York, 1958), Vol. 2.

Im(v ) 1 v
( )

Im(v) 1 v
(30)Im(v') 2 T' Im(r) 2 r

Using (25) and (30), we see that I, +I& in (29) also
has the transformation property of (12).

This completes the proof of (12). For full modular
invariance, we still need to show the invariance of the
integrands of (1) and (15) under (A) v„- v„+1(1~k~4), (B) vk vk+7, and (C) 7. 7+1. (C)
is trivial as w = exp(2+i~) remains unchanged. Under
the transformation (A), z—= exp(2miv, ~), and hence
by (8) f~(v;, , ~) are unchanged; so is Imv;, , and
X(vtJ, r). Thus the integrand of (1) is invariant. The
integrand of (15) will also be invariant if T is, and the
proof of that is identical to Eq. (6.17) in the second
paper of Ref. 3. Now consider (B). This implies
vIJ v&+ ~(SJk S,k). —By (26) and the known
transformation property of 83, f~ (v ~J, r ) f~ (v;J,
7 ) + 8Jk 5/k and thus by (5) and (6) the net change
of I, + lz is zero. The function lb in (4) now changes
into Ib+Xk, where Xk is the sum of U~k for all i ( k
minus the sum of all Uk, for all j ) k. But (22) can be
true for arbitrary v, only when all such quantities Xk
vanish. Thus Ib and hence I are invariant under (B).
Combining this with (3), we see that Eq. (1) is invari-
ant. From Ref. 3 we know that T, and hence (15), is
also invariant. This then completes the proof of the
modular invariance of the type-II superstring and the
heterotic string. This then allows us to integrate over
a fundamental region away from

~
r

~

=0,2 3 thereby
avoiding all possible divergences.
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