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Electrically Charged Vortices in Non-Abelian Gauge Theories with Chem-Simons Term
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It is shown that a non-Abelian gauge theory with Higgs fields and the addition of a Chem-Simons
term in 2+1 space-time dimensions exhibits finite-energy electrically charged vortex solutions. A
novel feature of the vortices is that their electric charge Q is quantized in units of the fundamental
charge e, Q/e = n/Z with n an integer, and their angular momentum is J= Q/Ze = n/4

PACS numbers: 11,15.Kc

Gauge theories exhibit a rich spectrum of finite-
energy (or finite-action) classical solutions. Vortices,
monopoles, and instantons are the best known topo-
logical solutions in 2, 3, and 4 space dimensions,
respectively. ' Magnetic monopoles admit an electrical-
ly charged generalization in 3+1 space-time dimen-
sions: dyons. Vortices, in both Abelian and non-
Abelian Higgs models, 3 5 do not admit finite-energy
charged generalizations in 2+ 1 dimensions. 6 7

The addition of a Chem-Simons (CS) terms '0 to
the Abelian Higgs model (in 2+ 1 dimensions)
changes this situation. " In fact, as a result of the pres-
ence of this term, vortices acquire electric charge
keeping finite energy. An Abelian vortex with k units
of magnetic flux has an electric charge (2mp/e)k,
where p, , which has the dimension of a mass, is the
coefficient of the CS term and e is the fundamental
charge unit.

We present in this note finite-energy charged solu-
tions for a non-Abelian Higgs model with a CS term in
2+ 1 dimensions. In this case, the CS term is topolog-
ical in character and noninvariant under "large" gauge
transformations, this last implying that p, must be
quantized. '0 As we shall see, this results in the quanti-

l

zation of the vortex electric charge 0which turns to be
Q = (e/2) n with n an integer; as a consequence, the
associated angular momentum of the vortex is
J= n/4.

Vortex solutions are associated with spontaneously
broken gauge symmetries via Higgs fields. In order to
have topologically stable vortices, the relevant homo-
topy group, xi(G/H), must be nontrivial. (G stands
for the gauge group and H for the invariance group of
the vacuum. ) For G =SU(N) and the Higgs fields in
the adjoint representation it is convenient to have
maximum symmetry breaking of G so that the vacuum
is only invariant under the unit matrix in the adjoint
representation. Then H= Zz, mi(SU(N)/Zz) = Z~,
and we have N 1 topologica—lly nontrivial homotopy
classes besides the ordinary vacuum (trivial class).

Although the arguments that follow are general and
apply to "realistic" theories such as the SU(5) grand
unified theory, it is useful to consider the simplest
theory that admits non-Abelian vortices. 3 s This is the
theory of a gauge field A„ taking values in the Lie
algebra of SU(2) (with generators r') coupled to two
Higgs fields (in order to achieve maximum symmetry
breaking) in the adjoint representation. The agrange-
an density (in 2+ 1 space-time dimensions) reads

W= ——,'F„F""+-,'D $ Di'$+ —'D f Di'Q+ —,'pe„„~lF" A" ——,
' eA~ (A" XA")]—V(p, i')

with A~ =A„'t' and

D„f=d„p+eA„&g, F„„=t)„A„—B„A„+eA„XA„.
The fourth term on the right-hand side of Eq. (1) is the Chem-Simons term. It violates both Pand T invariance

but not C invariance. Although it leads to gauge-covariant equations of motion, it is not itself gauge invariant;
rather, it changes by a total derivative. It then follows that the response of the action to a gauge transformation u
1S

S= ~ d'xW- d'xW+p(8vr'/e')r (u),

where cu(u) is the winding number of the gauge transformation. In order to make exp(iS) gauge invariant, one
then has to impose

p, = —e'n/47r, n EZ. - (2)

For G=SU(2) there is only one topologically stable vortex with $ and i' not parallel in isospace at the
minimum of the potential V($, Q) which can be taken, for example, as
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We make the following Ansatz for the charged vortex
solution:

f =J (p) (cos p, sing, 0),

A =e3A(p), Ao=e3AO(p)

with i3= (0, 0, 1) and (p, p) polar coordinates. One
can also make another vortex Ansatz exchanging the
coordinate dependence of $ and Q. It can be seen that
Eq. (4) leads to the lowest vortex solution provided
q&q' and g&g' or m(m' and g&g' (where mis
the Higgs mass, m =qg).

Finite action requires the following boundary condi-
tions:

A (~)= —1/e, Ao(~) =0, f(~) = v),

hence propose

The electric and magnetic fields take then the form

E]=~0;, 8=
2 e;.,g1

The topological charge k of the vortex configuration is
related to the magnetic flux: k = e4/2vr with
4=f dzx B. From the Stokes theorem and the boun-
dary conditions one gets

C = —2n/e

and hence k= —1 for our solution. With Ansatz (4)
the equations of motion

and

A(0) =A, (0) =f(0) =0.
D„Dt'qb = —,D„Dt"SV

D F""=j"+ —'p. ~" ~F
In order to define an electromagnetic field ~„„we

have at hand two Higgs fields. However, our Ansatz
corresponds to F„„and $ mutually orthogonal. We

become

j"—= e (D"$x $+ D"f x Q)

Ao'(p)+p 'Ao(p) —ef' A(op) = —(p/p)A'(p), A "(p) —p 'A'(p) —efz(1+eA) = —ppAo(p),

A (p) = —1/e+Zg(mp/e)Ki(m+p) [1+0(e -+ )], Ao(p) = + Z+(m/e)KO(m+p) [1+O(e +~)],

f"(p)+ p 'f'(p) p '(1+ eA)—'/f-(p)+ e'A 'f = —'g'(f' —~')f
As a result of the presence of the CS term only charged solutions are possible since Eq. (9) leads to a trivial A for
Ao ——0. One can easily analyze the asymptotic behavior of the charged solution from Eqs. (9). One finds two pos-
sible solutions for large p..

f(p) =q[1 —Y+Ko(mp)+ O(e ~&)],

where Z +, Y ~ are dimensionless constants and m +
the two distinct vector meson masses, for 0. Indeed, from Eqs. (2), (7), and (14) we get

(10)

m = ( —'p, z+ ezqz)' + —'p, g = (e/2) n, n C Z. (15)

Concerning the electric charge of the vortex config-
uration, note that the first of Eqs. (9) can be written in
the form

(12)

where the charge density a. reads

(r = e3 Jo = ezfzAO.

Since lim~ E, =O one gets from Eq. (12) a relation
between the electric charge Q,

g= dzxo, (13)

and the magnetic fiux:

(14)

This important relation, already recognized in Ref. 10,
is also valid in the Abelian model. In the present
non-Abelian case, it implies a quantization condition

The charge quantization can be connected with the
angular momentum of the vortex. In two space
dimensions there is only one generator of angular
momentum:

J=„d'x e'&x, To, ,

where T„„ is the energy-momentum tensor. For the
vortex solution, the only nontrivial momentum densi-
ty is To . Using its explicit form one gets

QOO

J=2n'„' pdpeAof + —,'p, A( )

= 0/e+mp/ez

J= Q/2e.

Hence, the vortex carries a quantized angular momen-
tum, J = n/4 (in contrast with the Abelian case where,
p. not being quantized, it can take any continuum
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value).
As is dwell known, vortices exist provided a

Ginzburg-Landau-type parameter X, vrhich in the
Higgs model is related to the scalar and vector meson
masses,

lt = In/~vector

satisfies the condition X & 1 corresponding to type-II
superconductivity. This leads to

p, = ne'/4m & gq(e'/g' —1)

fof nt ve~to~ nt y and

0 & —ne2/4n & gg(e2/g' 1)—

We conclude by noting that (Euclidean) three-
dimensional field theories can be used to study four-
dimensional physics at high temperatures. In this con-
text, charged vortex lines can find important applica-
tions in the early universe.
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for the m solution (this is also valid in the Abelian
model" ). Concerning the energy e of the vortex solu-
tion, from the asymptotic fields, Eq. (10), it follows
that e —nil In(e2/ni2~) and hence the m solution
has lower energy.

Qualitatively, the field behavior is the following:
The magnetic field decreases monotonically from its
value at the origin to zero at infinity with characteristic
length I/m; the scalar field qb increases with charac-
teristic length I/nt from zero at the origin to its vacu-
um value at infinity. Finally, the electric field van-
ishes both at the origin and at infinity, reaching its
maximum at some finite p.

As we stated above, an SU(N) theory admits vor-
tices with topological charge k=1, 2, . . . , N 1. In-
that case, the charge 0 = (en/2i N ) a with a = 1,

f ~ ~ ~ j
—l.
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