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Towards the Continuum Limit of Lattice Gauge Theory with Dynamical Fermions
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Simulations of Su(3) lattice gauge theory with four species of light quarks show a large peak in

the bulk specific heat near p=6/g'=5. 10 separating strong and weak coupling. (Qp) satisfies
asymptotic-freedom scaling for p=6/g2& 5.10 and (QQ)'t3/AMs= (2.6+0.1)(4n p/25) i" (MS
denotes the modified minimal-subtraction scheme). Finite-temperature simulations on a 6&&10

tice show a smooth but rapid crossover at T/AMs = 2.14 +0.10. We find no evidence for metastable

states.

PACS numbers: 12.3S.Gc

The first step toward solving quantum chromo-
dynamics numerically by lattice methods consists in
understanding its scaling laws and phase diagrams for
zero and nonzero physical temperatures. The ap-

proach to the continuum limit is controlled by asymp-
totic freedom which states that physical mass scales as
the lattice A parameter should depend on the lattice
coupling P = 6/g2 as

aAL = (8m2P/25)23t/ s exp( —4m2P/25) (1)

when g' approaches zero. Equation (1) applies to the

SU(3) gauge group coupled to four species of massless

quarks. In a simulation of lattice gauge theory Eq. (1)
can be verified most easily by the study of local quanti-

ties such as the chiral order parameter (irtiit) or the

temperature at which chiral symmetry is restored when

quantum chromodynamics is heated. Equation (1)
also applies to the masses of hadronic states, but pre-

cise measurements of composite propagators on the
lattice are particularly difficult. One needs improved
algorithms which can relax the long-wavelength modes
of the lattice theory efficiently so that statistical errors
do not overwhelm the determination of the long-

distance tails of the propagators. There are proposals
to that, ' but in this Letter I report relatively accurate
measurements of local observables only. I will use the
tuned-hybrid-stochastic-differential-equation approach
in this study. 2 This algorithm is much more efficient
than the naive Langevin equation. 3 It is also subject to
straightforward error analysis which eludes the naive
pseudofermion Monte Carlo method. 4 The hybrid al-

gorithm has been described elsewhere, 2 and so this
Letter will concentrate on results of physical interest.

I first simulated the lattice theory on a symmetric 84

lattice to understand its crossover from strong to weak
coupling. The average of the plaquette variable So,
tr UUUU (the Wilson action), was measured for
P = 5.00, 5.05, 5.075, 5.10, 5.15, 5.20, 5.25, and 5.30
to an accuracy of one part in 500 at each point. Bare-
fermions masses of m =0.10, 0.07, and 0.05 (in lattice
units) were used at each P value. The bulk specific
heat, C = —d$0/dP, was computed by finite differenc-

ing, —ASo/hP, and the results are shown in Fig. 1.
We observe a sharp peak at P = 5.10 separating strong-
and weak-coupling behaviors. This phenomenon re-
minds us of the crossover in the pure gluon theory. 5

The vacuum polarization provided by the fermions has
in large measure simply shifted the specific-heat peak
of the pure gluon theory to stronger coupling. This is
a nonperturbative, nonuniversal lattice effect which
bodes evil for Eq. (1)—large values of P (certainly
larger than 5.10) are necessary for this perturbative re-
normalization group result to apply. To investigate
this, (Qttt) was measured in the same simulation, its
values were extrapolated to m =0 for each P value,
and the result was plotted versus P as shown in Fig. 2.
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FIG. 1. The bulk specific heat, C = —dSO/dp. Typical er-
ror bars are sho~n.
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(44) and Wilson-&olyakov line expectation

values on a 6x103 lattice for m=0.05. Typical error bars
are shown.

FIG. 2. (QQ) scaling curve after the linear m 0.00 ex-
trapolation.

In particular, the small-g2 scaling law for (pp) reads,
when we account for its anomalous dimension,

(yy) i/3 g (4~2P/25)4/15A

where R is a dimensionless constant determined by the
simulation. The figure shows that the scaling law Eq.
(2) applies quite well for P & 5.10 although the error
bars on (QQ) are considerable. If we write Eq. (2) in
terms of AMs (MS denotes the modified minimal-
subtraction scheme), we find (AMs/AL = 76.44)

(pp) '/3 = (2.6 + 0.1)(4m2p/25)4 "AMs . (3)

Simulations of the pure gluon theory on 84-point lat-
tices predict

(QQ) '/3 = (3.8 +0.5) (4m2P/33)4/33A—

(pure gluon theory). (4)

Equations (3) and (4) will be discussed further below.
Figures 1 and 2 indicate that continuum physics can

be read off lattice simulations of this theory only if P is
chosen larger than 5.10. Presumably a more accurate
determination of (PP) would show a gradual approach
to scaling behavior as P ~ with computable correc-
tions to scaling coming from the leading nonrenormal-
izable operators in the operator-product expansion of
the lattice action. Nonetheless, Fig. 2 is a nontrivial
test of the hybrid algorithm and it indicates that some

physical scales of hadronic physics are accessible to
present-day simulations.

However, the large scaling violations shown in Figs.
1 and 2 for P = 5.10 indicate that all past studies of the
thermodynamics of the theory have not been in the
scaling region. Recall that the theory has been simu-
lated on a 4& 83 lattice and a rapid crossover from ha-
dronic to quark-gluon-plasma behavior was found at
P = 5.025 + 0.025.7 These "finite temperature"
results were certainly influenced by the bulk crossover
phenomenon seen in Fig. 1. The sharp peak in the
bulk specific heat may, in fact, be the cause of some
groups' contention that a hard first-order finite-
temperature transition exists even when fermion vacu-
um polarization is included in the dynamics. s To clari-
fy this issue I simulated the theory at finite tempera-
ture on a larger lattice, 6X103, at relatively small
bare-quark masses, m =0.10, 0.065, and 0.050. Typi-
cally 1.5&&104 iterations of the hybrid stochastic dif-
ferential equations were executed with a discrete time
step of dt =0.02 at each P and m At m =0.050 data
were taken at P=5.30, 5.25, 5.20, 5.175, 5.15, and
5.10. The observables included (QQ), the Wilson-
Polyakov line WL, the quark and gluon energy densi-
ties, and the Wilson-Polyakov line correlation func-
tions. The data at m =0.050 for (PQ) and the WL are
shown in Fig. 3. We note a rapid but smooth cross-
over as P varies from 5.15 to 5.20. The (QQ) and WL
curves are, in fact, considerably smoother than those
measured on a 4 x 83 lattice. In Fig. 4 I show the result
of two long runs of the algorithm at P = 5.175, one be-
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= 210 + 8 which can be expressed in terms of AMs,

T/A —=2.75+0.10 (m =0.050). (Sa)

It is also interesting to take the m =0.10, 0.65, and
0.050 data and extrapolate them to massless quarks.
The crossover at m =0.10 occurs at P = 5.325 +0.025,
for m = 0.065 at P = 5.225 +0.025 and for m =0.050 at
P = 5.175 + 0.025. These three points extrapolate
linearly to m=0 00. where P=S 01.0+0.025. Using
Eq. (1) we then have

I I l l I I I T/AMs = 2.14 +0.10 (m = 0.00 limit), (Sb)
2 5 4 5 6 7 8 9 lO I I lP 13
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FIG. 4. Wilson-Polyakov line measurements at P = 5.175
beginning with a cold and a hot start.

ginning with a equilibrium state prepared at P = 5.25
(hot) and the other at P=5.10 (cold). The WL's of
both the hot and cold starts evolve smoothly to the
equilibrium value characteristic of P = 5.175. No evi-
dence for metastability is found. Similar studies of
(Qf) and $0 confirm this result.

Finally we can estimate the physical temperature of
this narrow crossover region. At m =0.050 the cross-
over occurs at P =5.175 which is in the scaling region
of Fig. 2. Since Wt = 6, the physical temperature of the
lattice is aT= —,', where a is the lattice spacing. In
terms of AL, P=5.175+0.025 corresponds to T/AL

T/AMs = 2.12 (pure gluon theory). (6)

Remarkably, the effect of fermion vacuum polariza-
tion cancels out of the ratio T/AMs. This is also
roughly true for other physical quantities such as

where the uncertainty reflects the widths of the cross-
over regions in the data, and does not account for the
systematic uncertainty in the extrapolation procedure.
Since the extrapolation takes us from P=5.175 to
p=5.01 which does not lie in the scaling region, the
theoretical uncertainty in Eq. (5b) is considerable.
Presumably, the true tV, =6 estimate of T/AMs for
light quarks lies between Eqs. (Sa) and (Sb).

It is interesting to compare Eq. (Sb) to estimates of
the hard deconf|ning transition in the pure gluon
theory at Wt =6,9

T/(QP) 't3 = (0.56 +0.10) (4n 2P/33) 4t33 (pure gluon theory),

T/(PP)'~3=(0. 85+0.05)(4m2P/25) 4t25 (four quark species).

The anomalous factors in Eq. (7) are close to unity for
the couplings accessible to lattice simulations and are
included here only for completeness.

Equations (3), (5), and (7) are encouraging results.
The temperature of the crossover region and the mag-
nitude of (tltp) in the theory with light dynamical
quarks look very reasonable physically. However, in
light of Ref. 9, which shows that there are nonnegligi-
ble scaling violations at N, = 6 in the pure gluon
theory, we must expect systematic small changes in
Eq. (Sb) as larger lattices are studied. Much more ac-
curate measurements and renormalization-group
anNor finite-size-scaling studies will be required to re-
fine the results presented here. In addition, general
symmetry arguments suggest that the chiral-
symmetry-restoring transition at finite temperature
should be a fluctuation-induced first-order one. '0

Perhaps when larger lattices, which better approximate
the space-time continuum, are studied this effect will
be seen.

A lengthier account of this research, complete with
tables of simulation data, will be presented elsewhere.
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