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Giant-Oscillator-Strength Effect on Excitonic Optical Nonlinearities Due to Localization
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The optical nonlinearity X'3' of excitons localized by disorder or impurity has a large value as a
consequence of the double multiplication of the giant oscillator strength due to exciton localization
because the X' ) process involves the double repetition of the excitonic transition. The importance
of the exciton correlation in the coherent nonlinear optical process is pointed out for the first time.
The sign of X'3' relative to X"' gives important information about the character of the exciton
correlation.

PACS numbers: 71.35.+z, 42.65.8p, 73.40.Lq

The excitonic optical nonlinearities in semiconduc-
tor quantum-well heterostructures have attracted
much attention in the last few years. '2 An enormous-
ly large value of the third-order nonlinear optical sus-
ceptibility X(3~ at room temperatures has been report-
ed. It is usually thought that the excitonic optical non-

linearity is enhanced by the two-dimensional confine-
ment effect. However, it is found in this paper for the
first time that X(s) is really enhanced by the exciton lo-
calization effect as well as by the dimensional confine-
ment effect. As is well known, the quantum-well in-

terface is not smooth but has islandlike defects. 3 s

The excitons can be localized at one of these islandlike
defects since the exciton energy fiuctuates over several
millelectronvolts because of the inhomogeneity of the
quantum-well thickness in the lateral direction. In ad-
dition the excitons are possibly localized at impurities
or compositional disorder in the quantum-well layer.
In any case, the localization of excitons leads to the
enhancement of the oscillator strength as in the case of
the bound exciton. 6 7 In the third-order nonlinear op-
tical process, this giant oscillator strength is multiplied
twice because the X(3' process involves the double rep-
etition of the excitonic transition.

On the other hand, optical bistability due to the I2-

bound exciton in CdS at low temperatures has been
observed successfullys and holds promise for applica-
tion to an optical device of very small switching ener-

gy. In this case also the excitonic transition gets a gi-
ant oscillator strength due to localization at impurity
sites (neutral donors). A large value of X(3~ of about
10 ~ esu9 was obtained even for a low impurity con-
centration of about 10' cm

As noted above, the enhanced excitonic optical non-
linearities are closely related to the giant oscillator
strength of the excitonic transition due to exciton lo-
calization irrespective of the dimensionality of the sys-
tem. In this paper the general aspects of this relation-
ship are clarified and it is also found that the correla-
tion between two photogenerated excitons plays a cru-
cial role in the coherent nonlinear optical mixing.

First of all, let us discuss the giant-oscillator-
strength effect on the linear susceptibility Xi(~~~2D of
the localized quasi-two-dimensional (Q2D) exciton
and on Xi

i 3n of the bound exciton in the bulk crystal.
By the standard linear response theory, '0 the ratio of
X('~~ to the linear susceptibility Xb„'I3D of the free
exciton in the bulk crystal is calculated as

g(1)q2D
loc

X(i)3D

as3 32m $)~~Ls vo L,
4L,ot 21(2pL ) vo ooLs Ls+ Lis

'

where aa denotes the exciton Bohr radius in the bulk
crystal, L, the quantum-well thickness, Lts the thick-
ness of the barrier layer, uo the volume of the unit
cell, o.o

' the areal number density of the islandlike de-
fects or impurities in the quantum-well layer, gi the
localization length of excitons, and 1an integral related
to the exciton envelope function. " The parameters a
and p are the variational parameters involved in the
exciton envelope function and specify the extent of
the electron-hole relative motion in the directions
parallel and perpendicular to the quantum-well inter-
face, respectively. '2 Then the first factor on the right-
hand side of (1) represents the ratio of the probabili-

I

ties to find the electron and the hole at the same posi-
tion, which are inversely proportional to the ratio of
the exci ton volume. This factor describes the
enhancement of the oscillator strength due to the
dimensional confinement of excitons. The second fac-
tor can be interpreted as the enhancement factor of the
oscillator strength due to localization and has a similar
expression to that for the bound exciton. 6 7 The third
factor is the average number of localized excitons con-
tained in a unit cell, and the fourth factor takes into
account the fact that the barrier layer does not con-
tribute to X(3~ since an infinite potential barrier is as-
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sumed for the exciton. The first and second enhance-
ment factors will be denoted by Qd; and Qi, respec-
tively, and are plotted in Fig. 1 as a function of the
quantum-well thickness L, . Curve a for Qi is calcu-
lated for the exciton localized by the interface disor-
der, choosing the parameter g„,= 150 A, ~ whereas
curve b for Qi is calculated for the impurity-bound
exciton, taking pi~ equal to the quasi-two-dimensional
exciton Bohr radius. The enhancement factor Qi is
enormously large compared to Qd;, suggesting the
importance of the effect of exciton localization. Qd;
increases with decreasing L, since the exciton confme-
ment becomes stronger. On the other hand, Qi is
larger for more loosely bound excitons and thus the L,
dependence is opposite to that of Qd; .

Similarly, for the impurity-bound exciton in the
bulk crystal, the ratio Xi('~3D/Xi(„'Ik3D is given by the
product of the enhancement factor of the oscillator
strength Smgi3+~0 and the average number of bound
excitons contained in a unit cell uo/&0, where Vo is
the impurity concentration The. former factor is about
4&& 103 for the I2-bound exciton in CdS.s

The excitonic optical nonlinearities can be measured
by the third-order nonlinear susceptibility X(31. The
latter quantity can be calculated by time-dependent
perturbation theory. '3'4 The third-order polarization
density induced in a material system by external fields
is given by

10

106

10— 105

50 &DO &50

L,(h,}

F16. 1. Enhancement factors Qd; and Q~„plotted as a
function of the quantum-well thickness L,. Curve a, Q~,.
calculated for the exciton localized by the interface disorder
choosing g~ =150 A; curve b, Q~„ for the impurity-bound
exciton taking g~

= as(Q2D).

(2)

the localized quasi-two-dimensional exciton will be
denoted by Xi( q2D. At low temperatures the excitons
are stable against thermal ionization by LO phonons,
in contrast to the case at room temperature where they
are found to be ionized in less than 1 ps. '5 Thus when
one considers Xt31 at low temperatures or under off-
resonant excitation even ai room temperature, one can
discard the ionized exciton states from the relevant in-
termediate states in (2).

In the calculation of Xt31 for the localized exciton,
there appear typical terms such as

~g) Pg2

(P (r, t)) = ( —t/&) „dti„' dt2&' dt3((l(P(r, t),Ht(ti)], Ht(t2)], H&(t3)]),

with Ht = fd3r P(r) E(—r), where P(r) is the
polarization-density operator and the angular brackets
denote a thermal average. The electric field Econsists
of two external fields with wave vector k& and frequen-
cy co (j=1,2). Hereafter the nonlinear susceptibility
X"' —2a&i+~2, cvi, cut, —0~2) will be denoted simply
by Xt3l. In the calculation of the matrix elements in
(2), the relevant intermediate states should be inserted
between operators. According to the relevant exciton-
ic state, one can classify the susceptibility Xt31 with
suffixes. For example, the susceptibility Xt3l due to

~Il &&2 b b I ~3 (3)
R,R~

fpt a a j E$ u~ b a& b I ~2 b b I I3 (4)
R,Eb

where IO), IR, ), and IR„Rt,) denote, respectively, the crystal ground state, the state having a localized exciton at
site R„and the state having two localized excitons at sites R, and Rt, . The correlation between the two excitons in
IR„Rt,) plays an important role in the generation of the nonlinear polarization since the coherent nonlinear optical
mixing occurs within the coherence lengths of the material excitation and the radiation fields. In fact, it is found
that X for the localized exciton is proportional to the factor

I~„= „dr~ dR C(r) G(r+R) I G(R) I'/] d. G(.) -1,
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where the function C describes the correlation be-

tween two localized excitons, G is the normalized lo-

calization envelope function, and the integrals are two

or three dimensional. The first term on the right-hand

side of (5) is the contribution from the terms like (4)
in which R, =Ri„while the second term, —1,
represents the contribution from the terms like (3) to-

gether with that from the terms like (4) in which

R,eRi, . It is seen that Xt3i vanishes through the fac-
tor Ex when the two excitons are completely uncorre-
lated, i.e. , C(r) =1.

It is significant to note that the sign of Xt3i depends
on whether the correlation between two excitons is

repulsive or attractive. The Pauli exclusion principle

and the Coulomb interaction work to induce a repul-
sive correlation between two bound excitons, i.e., to
prohibit formation of two excitons around a single im-

purity or an interface defect. On the other hand, an at-
tractive correlation works between two free excitons so
that an excitonic molecule is formed. '6 The correla-
tion factor E& is found to be positive or negative for
the case of repulsive or attractive correlation, respec-
tively, by a simple model calculation. '7 Thus the mea-
surement of the sign of X relative to Xt' gives im-
portant information about the character of exciton
correlation.

The third-order nonlinear susceptibility Xb(3Ik3D due
to the free exciton in the bulk crystal can be calculated
in the same way. Then one finds

~(3)g2D
ioC

X (3I3D

QB
3

4L,a 21(2PL, )

32m g~~L, uo L,
ooL, L, + Ls

(6)

6a+ I Uo

8(3g +1)2 @3' (,(3D')
(7)

with a =gi2 (Q2D)/$2„(Q2D), where the correlation
function and localization function are assumed to be
Gaussian with characteristic lengths g„, and gi
respectively, and the correlation lengths are denoted
by („,(Q2D) and $„,(3D) for the quasi-two- and
three-dimensional cases, respectively.

Now the absolute value of Xit3iq2D can be estimated
theoretically by use of the value of the longitudinal-
transverse splitting energy of excitons in GaAs. '8 For
the exciton localized by interface disorder, Xt3i is es-
timated as 1.2x10 5 esu, with the choice of the
parameters L, =80 A, (i =150 A, 4 and o0=10
cm2, ' and the assumptions that the correlation length

(„„is twice the exciton Bohr radius aa and the off-
resonance energy hoi is 1 meV. ' For the impurity-
bound exciton in the quantum well, X, q is estimat-
ed as 2.7 && 10 5 esu, by choice of the impurity concen-

where the correlation factor C& will be given later. It
is important to note that in the derivation of (6) the
energy denominators of Xt3i are assumed to be the
same for both the localized quasi-two-dimensional ex-
citon and the bulk exciton and thus they cancel in the
ratio. The interpretation of each of the first four fac-
tors on the right-hand side of (6) is the same as given
for (1). Both enhancement factors in (1), that due to
the dimensional confinement and that due to the exci-
ton localization, appear multiplied twice in (6) since
the Xt3i process involves the double repetition of the
excitonic transition. The correlation factor C& is ab-
sent in (1) because only one excitonic transition is in-

volved in the X~'~ process. Thus this factor first ap-

pears in the nonlinear-response coefficients. For the
case of repulsive correlation, Cx is given explicitly as

tration to be 10'7 cm 320 and gi„= aa. These values
are much larger than the Xt3i values of Si 2' and polydi-
acetylene. 22

The discrepancy between the above theoretical value
of XI3~q2D and the experimental estimate' is to be ex-
plained. The experiments of Refs. 1 and 15 were car-
ried out under resonant excitation of excitons and at
room temperature. In these cases, the exciton dynam-
ics in the presence of bound or free electron-hole pairs
plays the key role as clarified by Schmitt-Rink, Chem-
la, and Miller. 23 On the other hand, when no real
electron-hole pairs are created under off-resonant exci-
tation and at low temperatures, the localized treatment
of the exciton correlation as given here is relevant to
describe the coherent nonlinear optical process, e.g. ,
the dispersive optical bistability. Thus the discrepancy
between our theoretical estimate of X, q and the
experimental one' arises from the difference of the
physical situations dealt with. When our theory is ex-
trapolated to the case of resonant excitation, only for a
rough order-of-magnitude estimation, the absolute
value of Xt3i is found to be enhanced by a factor of the
order of Tiihcoi, where Ti is the longitudinal relaxa-
tion time and b, cu is the off-resonance frequency. With
use of the value Ti = 5 x 10 '0 s,2" X 3i for the exciton
localized by the interface disorder is estimated as
9.1 x 10 3 esu, in fortuitous agreement with the exper-
imental estimate, ' in order of magnitude.

Similarly for the I2-bound exciton in CdS, 8 the abso-
lute value of Xit3)3 is estimated to be 2.2&10 ~ esu
on the assumption that the correlation length („, is
twice the exciton Bohr radius, and by choice of the
off-resonance energy to be 0.3 cm '.s The agreement
in order of magnitude with the experimental estimate9
is satisfactory.

In summary the excitonic optical nonlinearity is
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enhanced not only by the dimensional confinement ef-
fect but also by the giant-oscillator-strength effect due
to exciton localization. For the purpose of obtaining a
large value of the excitonic optical nonlinearity, the
perfect and clean quantum-well structure is by no
means favorable. Instead, by control of the morpholo-

gy of the quantum-well interface suitably or by utiliza-
tion of the bound exciton levels effectively, the most
effective nonlinear optical devices can be designed.
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