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Monte Carlo Method for Magnetic Impurities in Metals
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%e discuss a Monte Carlo algorithm to study properties of dilute magnetic allqys; the method can
treat a small number of magnetic impurities interacting with the conduction electrons in a metal.
Results for the susceptibility of a single Anderson impurity in the symmetric case show the expect-
ed universal behavior at low temperatures. Some results for two Anderson impurities are also dis-

cussed.

PACS numbers: 75.20.Hr

This paper discusses a Monte Carlo method to study properties of a small number of magnetic impurities in-

teracting with the conduction electrons in a metal. As usual, we assume that electron-electron interactions occur
only at the impurity sites. Our algorithm is related to the method introduced by Blankenbecler, Scalapino, and
Sugar' (BSS) to study fermion systems on a lattice, but has a number of advantages for the study of magnetic im-

purity systems: It can deal with an inf nite sea of conduction electrons, and it does not suffer from instabilities at
low temperatures. Although the BSS algorithm can also be used for magnetic impurities, it is not possible to
reach with it the interesting low-temperature regime as a result of these instabilities. 2

Consider for definiteness the single-impurity Anderson model:

0= Xkekck~ca~+ Xk ~ Vk(ckrrdo + H.c.) + &aQna~+ Ungt nd 1
—HO+ Hi. (1)

In a discrete path-integral formulation the partition function is
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with P = LIs7. We decouple the interaction part of the Hamiltonian by introducing auxiliary Ising variables:

exp( —6~Hi) =exp{ bv U—[ndt nest
——,

'
(nqt + nqt)]I = —,

' Tr exp[i(r(nest —
nest )]

with cosh'. = exp(hr U/2), and take the trace over fer-
mion degrees of freedom. The result can be written as

detiv I, Op ( {(rt)) pZ =Tr~
+ ]

where 0„ is an NL x NL matrix, with N the number of
spatial sites (or k vectors) for the conduction electrons
plus 1 (the impurity orbital). It is also possible to
reduce the determinant in Eq. (4) to a determinant of
an Nx N spatial matrix, ' but we choose not to do so
here. The matrix elements of O„are

(0„)(,= 1,

(0 ) = et "gee ~'(1--2S-„),
(Sa)

(sb)

and (0„)t =0 otherwise. In Eq. (5), E is an N x N
matrix corresponding to the bilinear part of the Hamil-

tonian [Hti in Eq. (1)] and

Vt'=&p, tT(l) fd) (d)

is a potential acting only at the impurity site. The
Green's function g„=O„' is found to obey the

Dyson equation (we omit It, indices for simplicity)

g'= g+ (g -1)(e'

relating any two spin configurations. Here
( V)tt, =Sit, Vt is a diagonal matrix in space and time.

Equation (7) is most easily established by finding first
the Dyson equation for g = e "g.

Because the potential acts only at the d site, Eq. (7)
provides directly an L x L matrix equation for the d
Green's function:

g'(ll')=g (ll)+[g~(ll )-S„„][exp(V,:, —V,„)-1]g (I",I').
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The ratio of determinants for flipping of the spin at time slice i is given by

8 = 1+ [1—gd&(l, l) ] [exp( Vi' —Vi) —1].

This can be shown directly by use of g. When a move is accepted, all components of the d Green's function are
updated through the relation

x [exp( V,
' —V, ) —1](I+[1—gdd(l, l)][exp( Vi' —V, ) —1]] 'gdd(l, l2), (10)

which is easily derived from Eq. (8). Equation (10) is formally identical to the equation derived by BSS to update

the equal-time Green s function for different spatial matrix elements. This is of course obvious in the present for-

mulation, since both follow from the Dyson equation (7).
Equations (8)-(10) constitute the basic equations of our approach. Initially, Eq. (8) is used to obtain gdz from

the Green's function for the fields cr set equal to zero,

(12)

[~& = (2n+1)~/P], by inversion of an L x L matrix (L operations). After this, g~ is updated in L operations
[Eq. (10)] every time a move is accepted. Surprisingly, this procedure is found to be very stable, and only after—50 sweeps does it become necessary to recompute g from Eq. (8) at the lowest temperatures studied (L = 128).
It should be emphasized that in this approach the conduction electrons enter the problem only through the Green s
function at the impurity site, and thus it is straightforward to study different band structures or even free electrons
in a continuum. The energy scale set by the bandwidth does not limit the lowest temperature that can be reached
with the algorithm, as in the BSS approach.

For the single Anderson impurity we have chosen a flat density of states and an infinite bandwidth, and Vk in-
dependent of k. The starting Green's function is4

g'(l, l')= —
I

'
e ' " ''[f(~) —&(l —l')1

(a —ed —U/2) '+ 52

with b, = m V p(eF), p(eF) the density of states at the Fermi surface, and f(e) the Fermi function. We consider
the symmetric case, i.e., eq = —U/2. We measure observables in the usual way'; for example, the d-spin suscep-
tibility is

X = dr ( [dI (r ) d I (v ) + di (r) d t (~) ] [dl (0)d I (0) + dl (0)dl (0) ]) (14)

and the averages for each o. configuration are easily
obtained from the d Green's function. The results
shown here were obtained from 5000 measurement
sweeps preceded by 1000 warmup sweeps; the error
bars are smaller than the points except where shown.
As a check on our Monte Carlo algorithm we have
done extensive comparison with exact diagonalization
results for an impurity interacting with a two-site
conduction-electron lattice.

Figure 1 shows impurity charge and spin susceptibil-
ities for b =0.5 and U=O, 1, and 2. As U increases,
the charge susceptibility is suppressed while the spin
susceptibility increases rapidly as T decreases and lev-
els off at low temperatures, as expected. The arrows
indicate the expected low-temperature limits from the

r

x —w 2/16x
=&Kondo 1+ ~„, (lsa)

—(2~g ) —1(~/2 u ) 1/2em2/Su —1/2u (15b)

2 OO —X2i2u
~ch= (15c)~b(2~u)'/2" — 1+ (au/2+x)2 '

with u = U/nA
Figure 2 shows results for the local moment (o-,2)

and for T& plotted versus log T for 5 =0.5 and U=1,
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FIG. 1. Charge (closed circles) and spin (open circles)
susceptibilities for a single symmetric Anderson impurity;
5 =0.5 and u = U/md =0, 0.637, and 1.27. The arrows in-
dicate the expected lo~-temperature limits. 57 = 0.25.

e(k) = (D/2) [(k/k„)2 —I], 0 ~ k ~ 42k„, (16)

2, 3, and 4. For U= 1, there is a direct transition
between the free-orbital regime (TX=0.5) and the
strong-coupling regime where the local moment is

quenched and TX goes to zero. For U~2, TX first
increases as T is lowered and the local moment starts
to build up, and only at lower temperatures is the local
moment quenched. The Kondo temperature obtained
from the renormalization-group analysis X(T=O)
=0.103/Tx, with X(T=O) obtained from Eq. (15), is

Tx=0.169, 0.0865, 0.0435, and 0.0216 for U= 1, 2,
3, and 4, respectively. It is shown as arrows in Fig. 2,
and the corresponding curves for the universal Kondo
susceptibility7 as dashed lines. Note that the agree-
ment with the Monte Carlo results is very good (no
adjustable parameters). Our results for U=2 and
U=4 compare also well to the Bethe Ansatz resu-lts of
Okiji and Kawakamia for those cases over the entire
temperature range. As U becomes large, systematic
errors in the Monte Carlo results due to finite A~ be-
come significant and deviations from the universal
behavior occur. The error in the observables due to
finite Ar is expected to be proportional to 5~2 and fin-
ite as T 0.'

It is straightforward to generalize this method to n

impurities, in which case g~ and VI in Eqs. (8)-(10)
become n && n matrices; the number of operations per
update is (nL) 2, and per sweep ( nL) 3. Figure 3 shows
spin-spin correlations as a function of kFR for two An-
derson impurities with ez= —U/2, U=2, and b, =0.5.
Here, we have taken for the conduction electrons a
free-electron dispersion relation:

Z o g Q Q Q Q ~
0

o q e e
I I0.5

l.O
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U = l.9 l
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lQ IO

u= l.27
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I
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T

I

lO lo'

Ik R
and Vk, = Ve ', R=R~ —R2. The spin-spin correla-
tions show the expected oscillatory behavior due to the
Ruderman-Kittel-Kasuya- Yosida (RKKY) interaction.
Figure 4 shows the behavior of the susceptibility and
of spin correlations versus temperature for kFR =0.5,
i.e., in the ferromagnetic regime. TX is still very large
around the Kondo temperature for the single impurity,
indicating that the magnetic interactions dominate
over the Kondo effect in this case. The staggered sus-
ceptibility is somewhat suppressed from the single-
impurity value and actually levels off around TK in this
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FIG. 3. Spin-spin correlations vs kFR for two Anderson
impurities; 6 =0.5, u =1.27, D= 12, Ar =0.25, and P=8
(closed circles) and 16 (open circles).

FIG. 2. (a) Local moment (o.,') and (b) T x (spin suscep-
tibility) for a single Anderson impurity; 5 =0.5 and
u =0.637, 1.27, 1.91, and 2.55. The closed and open circles
correspond to A~ = 0.25 and A~ = 0.5, respectively. The
dashed lines are the universal Kondo susceptibility for the
four values of TK given in the text.
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one case how magnetic interactions become important
as the temperature is lowered. A detailed discossion
of the properties of two Anderson impurities will be
given elsewhere.
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FIG. 4. (a) Spin correlations for iwo impurities; parame-
ters as in Fig. 3; kFR =0.5. Open circles, (o,io2) (right
scale); closed circles, (a,') (left scale). We also show (o 2)

for kFR oo (crosses). (b) T x susceptibility for kFR =0.5.
Closed circles, uniform; open circles, staggered susceptibili-
ty. The crosses show the single-impurity (kFR = ~ ) values.
The arro~ indicates the Kondo temperature for the single
impurity.

case. The spin-spin correlation function increases as T
is lowered but appears to level off, suggesting that
(o fear )) & 1 at T=0, so that the impurities do not be-
come locked into a triplet state. '0 The local moment is
found to be somewhat larger than for R=~. For
temperatures well above TK, the results join onto the
single-impurity results.

In summary, we have discussed a method to per-
form simulations on magnetic impurity systems and
implemented it for one and two Anderson impurities.
Our approach is essentially a numerical implementa-
tion of the sum over paths in the functional integral
discussed by Hamann in the single-impurity case, and
by Chakravarty and Hirsch for the two-impurity case";
one important difference, however, is that the Ising
formulation allows us to rigorously sum only over the
important "hopping paths" discussed by Hamann,
since the other paths (small Gaussian fluctuations) are
not present in this formulation; the convergence of the
numerical calculation is thus greatly enhanced. '2 Our
approach allows us to deal with an infinite sea of con-
duction electrons, and does not suffer from instabili-
ties. For the single-impurity case, we showed that
Monte Carlo simulation can reproduce the expected
universal behavior; for two impurities, we showed in
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