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Fracture Behavior of a Solid with Random Porosity
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%e report the results of an experimental study of the fracture stress, 5, and the Young's

modulus, E, of a two-dimensional solid (network) which has undergone random dilution to the

point where the solid becomes geometrically disconnected. In the scaling region, E —(p —p, )f
with f= 3.1 10.1 and S —(p —p, )r with F= 1.7 &0.1. We find that appropriately modified formu-

lations of the Griffith relation can account for the fracture stress in the entire range of bond dilu-

tion.

PACS numbers: 62.20.Mk

In this Letter, we report the results of experimental
studies of the Young's modulus and fracture strength
of a solid which has undergone random dilution to the
point where the solid becomes geometrically discon-
nected. The behavior of the elastic moduli of such
solids has been the focus of a number of recent
theoretical investigations' and two experimental
studies. '0" A principal result of these studies is that
the elasticity exponent, f, which governs behavior
near p„the percolation threshold, can be significantly
higher than the corresponding electrical conductivity
exponent of elastic systems with both central and
bond-bending forces. The theoretical studies yield
values of f in 2D of approximately 3.5 for the discrete
lattice models ~ ~ and f+ —', for the "Swiss cheese"
continuum model. 7 Benguigi'o performed experiments
on a 0.2-mm-thick metal sheet in which holes were
punched at random on sites of a 20X 20 square lattice
and reported a value of f in 2D of 3.5+0.4. On the
other hand, very little attention has been given to the
fracture properties of dilute solids. The conventional
area of interest in fracture has been in the regime
where the density of cracks is such that they are not
considered to interact. The Weibull statistics has been
used to treat the brittle fracture problem in this re-
gime. '2 To date, we know of only one study in which
the fracture properties of dilute brittle solids were in-

vestigated. Ray and Chakrabarti'3 reported results of
molecular-dynamic simulations on a 20 X 20 square lat-

tice of atoms interacting with the 6-12 Lennard-Jones
potential. Bonds were removed. at random and the
fracture stress of the resultant structure was deter-
mined. They found that S —

~ p —p, ~

F with F= 1,
where S is the fracture stress and p is the fraction of
bonds present.

Here we report results of the Young's modulus, E,
and fracture stress, S, for a system composed of a 2-
mm-thick plate of aluminum with holes drilled at posi-

tions corresponding to a triangular lattice of 21 rows
and 20 columns as shown in Fig. 1. The sample con-
tains 1230 ligaments (or "bonds") which link the
voids arranged in the triangular lattice. For each reali-
zation each bond was assigned a random number, n,
between 0 and 1. The bonds for which n & p are cut
where p is decreased successively from unity and a
measurement of the elastic modulus and fracture
stress is made. The tests were performed on a Instron
model 4202 universal testing machine which is inter-
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FIG. 1. The configuration of the 20 triangular network.
The ligaments connecting the voids are randomly cut form-
ing cracks as described in the text.
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faced to a Hewlett-Packard 86B desk-top computer.
Measurements of Young's modulus were made in the
linear-elastic portion of the load-displacement curve.
Elastic behavior was confirmed by unloading and

checking for resultant plastic strains. Each datum

point for the Young's modulus represents the average

of at least three separate load-displacement curves.
The fracture stress, S, was determined by obtaining

the full load-displacement curve for the sample to
failure. The fracture stress is defined at the maximum

in load of the load-displacement curve. '4 The be-
havior of the Young's modulus was examined by use
of two realizations. A single sample was used for the
first realization and E was determined for successive
descending values of p. In order to implement the
second realization eighteen identical samples (p=1)
were prepared from a template. Bonds were cut in

each sample according to a prescribed value of p and
the Young's modulus determined for that sample.
Following the Young's modulus determination, the
load-displacement curve of the sample to failure was

measured.
The results for the Young's modulus and the frac-

ture stress are shown in Fig. 2. E and S are the mea-
sured values of these quantities when all the bonds are
present (p=1). In the region far away from p, the
modulus behavior is well described by E/E =1 —3@
(where @=I—p) which is in good agreement with
effective-medium theories. '5 Figure 3 is a log-log plot
of E and S vs p —p, for p, =0.63, the average value
of p at which the solid became geometrically discon-

nected. The measured value of p, in the first realiza-

tion was 0.625 and in the second realization 0.630.
The slopes represent estimates of the exponents and
were determined by use of the points with values of
p —p, such that the percolation correlation length is

smaller than the macroscopic sample size, L. The elas-

ticity exponent f is 3.1 +0.1.'s The fracture stress also

displays po~er-la~ behavior in this regime and the
fracture stress exponent, F, is 1.7 + 0.1.

Consider the fracture stress behavior, first in the
region far away from p, . For $=W& ', i.e. , one
"crack," d(S/So)/dp ~ (Na is the number of
bonds). This is to be expected since any cracklike flaw
in an otherwise homogeneous sample results in a
discontinuous change in the fracture stress of the sam-
ple. As $ increases there are at first a small number of
short cracks (formed by a single cut bond). The crack
density is so low that the interaction between cracks is
negligible and the fracture stress behavior is described
by the weakest-link concept and Weibull statistics.
Here the fracture is very sensitive to structural flaws.
That is, minor deviations in ligament width resulting
from inevitable machining inaccuracies (of the tem-
plate) in conjunction with the crack locations deter-
mine the location of the fracture initiation site and the
fracture stress. Our experiments show that in this re-
gion the data are subject to considerable scatter. For
example, the normalized fracture stress, S/S, was
0.75 for samples with 1 and 9 broken bonds. (This is
indicated by a single point in Fig. 2, as a result of the
scale of the figure. )

As the crack density increases the crack interactions
become more significant. Each crack may be con-
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FIG. 2. Normalized Young's modulus, F/E, and frac-
ture stress, S/S, as functions of p.

FIG. 3. Double logarithmic plot of E and 5 vs p —p„
p, = 0.63.

2510



VOLUME 56, NUMBER 23 PHYSICAL REVIEW LETTERS 9 JUNE 1986

S/S = [(1—3@)cos(nl/ W)]'I',

where

S = [2Eoy/n I]ti'

(2)

In this region where our definition of W is applicable,
I/ W = 1.37@ti2, and the magnitude of the slope,
d(S/S )/d@, evaluated by use of Eq. (2) is —6. Ex-
amination of Fig. 2 indicates that this result is in

reasonable agreement with our measurements.
In order to understand the behavior of the fracture

stress in the scaling region we have examined the
behavior of the average crack-spanning length perpen-
dicular to the loading axis; I,„=g; n ( I;) I2/g; n ( I;) I, as
shown in Fig. 4. Here I, is the spanning length perpen-
dicular to the loading axis of crack i and n(l, ) is the
number of cracks of length i. Our measurements indi-

cate that I,„—(p —p, ) with m =0.9 +0.1. Figure 4
shows that as the average crack length increases the to-
tal number of cracks, n, decreases according to
n —(p —p, )a with 6=0.5+0.05. We define an effec-
tive crack length, I,rr, as (the number of cracks per
row) x i,„sothat l,rr- (p —p, ) . In effect, as a
result of the high linear density of cracks, we treat col-
linear cracks as connected to form a single crack of
length I,rr These relat. ions in conjunction with the

sidered to occupy a region of average areal size given

by A/Iti'@ where A is the sample area (4.0x 3.6 in.2)

and N' is the effective number of bonds oriented per-

pendicular to the tensile axis. In order to evaluate %'
we consider that two adjacent diagonal bonds have a

projected length perpendicular to the tensile axis
equivalent to a single horizontal bond so that
N'=820. This tesselation forms X'@ miniature ten-
sile samples each with central crack of length
21=0.356 in. , such that the tensile axis is oriented
perpendicular to the crack. The width, W, of each
block may be taken to be (2/iV'@)t/2=0. 13@ ' 2 in.
W is bounded by the finite sample size ( W & L) so
that the expression developed for W is applicable in

the range 0.04~@~/, where $, =0.14. In our
block scheme @, represents the crack density for
which W=2I. Near $, the average crack size is no
longer represented by a crack formed by a single cut
bond, crack condensation and overlap is common, and
the fracture behavior crosses over to the power-law re-

gime. A modified form of the Griffith equation which

accounts for fimte-sample-size effects in a plate of
width W containing a central crack of length 2I orient-
ed perpendicular to the tensile axis is given by'7

S = [(2Ey/m I)cos(~ I/ W) ]'I,
where 2y is the work per unit area associated with

forming the new surfaces. The modulus behavior in

this regime is described by E= E (1 —3$) and substi-
tution into Eq. (1) yields
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FIG, 4. Double logarithmic plot of /, „and the number of
the cracks, n, vs p —p, ; p, =0.63.
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Griffith relation, S = (2Ey/~l)', provide us with an
understanding of the fracture stress in the scaling re-
gion. Substituting E —(p —p, ) ' and, for I, I,«—(p —p, ) into the Griffith relation yields
S —(p —p, )'7' in good agreement with the measured
result.

In summary, we have reported the results of experi-
mental studies of the Young's modulus and the frac-
ture strength of a solid network which has undergone
random dilution. We find that appropriately modified
formulations of the Griffith relation can account for
the fracture stress in the entire range of bond dilution,
i.e., p, & p & l. In the scaling regime E —(p —p, )f
with f=3.1 +0.1 and S —(p —p, )F with F=1.2
+ 0.1.
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