VOLUME 56, NUMBER 23

PHYSICAL REVIEW LETTERS

9 JUNE 1986

Rigid Backbone: A New Geometry for Percolation

A. R. Day, R. R. Tremblay, and A.-M. S. Tremblay

Département de Physique et Centre de Recherche en Physique du Solide, Universite de Sherbrooke,
Sherbrooke, Quebec JIK 2R 1, Canada
(Received 26 December 1985)

It is shown that the diluted two-dimensional central-force problem belongs to a new class of per-
colation problems. Geometric properties such as the fractal dimension of the backbone, the
correlation-length exponent, and the connectivity are completely different from those of previously
studied percolation problems. Explicit calculations of the backbone and the construction of an algo-
rithm which identifies the infinite rigid cluster clearly demonstrate the absence of singly connected
bonds, the overwhelming importance of loops, and the long-range nature of the rigidity.

PACS numbers: 64.60.Cn, 05.70.Jk, 62.20.—x, 63.70.+h

The percolation model! has, for a number of years,
been a source of insight into many diverse physical
phenomena.? Recently, it has been employed to
understand elastic properties of tenuous media such as
gels, >4 sinters,® or even certain glasses.%’ It was origi-
nally suggested by de Gennes® in the polymer context
that the critical properties of the elastic moduli at the
percolation threshold would be the same as those of
the conductivity. It has become evident, however,
that this is not generally true,®"!° one of the reasons
lying in the different tensorial character of the prob-
lem.

Recent work has concentrated on two models of
elasticity percolation, the bond-bending model®!! and
the central-force model.!2 It has become clear that
they have different critical elastic behavior but the full
nature of this difference and its underlying causes
have not yet been generally appreciated. In this Letter
we address this issue: We present the first analysis of
the geometry of the percolating rigid clusters for the
two-dimensional central-force model. While the back-
bone geometry of the bond-bending universality class
is the same as that of ordinary percolation,’ we show
here that for the central-force model, the geometry is
both quantitatively and qualitatively different. We
compute the backbone fractal dimension!3!* to exhibit
a quantitative difference and present graphic and algo-
rithmic evidence which show qualitative differences
such as the absence of singly connected bonds, the im-
portance of loops, and the essentially long-range na-
ture of elastic connectivity.

The best-understood model for elasticity percolation
is the so-called bond-bending model.>>!! That model is
the simplest realization of a general class of models'
where geometric connection implies elastic connec-
tion. For these models the threshold, p., and the per-
colation critical exponents 8,, v,, ¥,, and a, are ident-
ical to those of the equivalent geometric problem.
“Dynamic’’ exponents, however, depend on the prob-
lem: Namely, the exponent f which governs the elas-
tic moduli is different from the exponent ¢t which
governs the conductivity. Nevertheless, the basic
physics which controls these exponents can be readily
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understood in both cases from the ‘‘nodes-links-
blobs’’ picture!* of percolation clusters. In fact, it is
fair to say that in the vast majority of percolation prob-
lems encountered to date, even continuum percola-
tion,!® the basic geometric features of the percolation
clusters, such as the scaling of the number of singly
connected bonds, are identical and the differences
arise only at the level of the ‘‘dynamics.”

For the class of models of interest here, however,
geometric connection (the existence of a bond) does
not imply complete elastic connection because the
number of constraints associated with the existence of
a bond is smaller than the number of degrees of free-
dom associated with the sites it connects. The percola-
tion threshold is higher? than that of the corresponding
standard percolation problem. Thorpe® has suggested
the name ‘‘rigidity percolation’ for this class of
models, distinguishing it from the ‘‘elasticity percola-
tion”’ universality class mentioned above. In this pa-
per, we study the simplest rigidity-percolation model,
namely the two-dimensional central-force model.® Ex-
tensions to other models that are of more physical sig-
nificance are discussed in the conclusion.

Model.—The central-force Hamiltonian depends on
the Euclidean distances between sites and hence is in
general a nonlinear function of the coordinates. We
study here the linear-response limit of this Hamiltoni-
an on a random triangular net of unit masses and
springs,

H=;—Euk[j[(u|¥_u1)flj]2, (1)

where k; equals k=1 with probability p and vanishes
with probability 1 — p, u; is the displacement at site i
and T, is a unit lattice vector between sites / and .
This model was first studied numerically by Feng and
Sen® using a relaxation technique. They found a criti-
cal probability p.,=0.58 and an exponent f=24
+0.4. Later, extensive simulations using an exact
transfer-matrix technique on long strips!? and finite-
size scaling have found p.,=0.65 £0.005, v ,=1.05
+0.15, and f=1.4 £0.2. The values for p, and for
the correlation length exponent v., have been in-
dependently confirmed.!” The value of f/v., is also
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confirmed in the present work. Note that the value of
Veq 1S significantly different from the usual percolation
result v = % suggesting, but not proving, some differ-
ences at the geometric level.

Simulations for the backbone.—We perform simula-
tions on rectangular sections of triangular nets, con-
taining L x L unit triangles.'® We work at p = p..,, and
apply a macroscopic strain to the boundaries, minimiz-
ing the energy with a conjugate gradient technique.
For example, the elastic constant Cy; is obtained from
the total elastic energy resulting from a displacement
of rigid bus bars at the top and bottom boundaries with
sites on the fixed vertical boundaries constrained to
move vertically. We are interested in the strain in
each bond. For that purpose, unacceptable numerical
errors accumulate unless calculations are performed
with 64-bit (quadruple precision) accuracy. 32-bit ac-
curacy also gives acceptable results if the conjugate
gradient is iterated beyond its theoretical limit for ex-
act matrix inversion.!® This accumulation of errors is
probably related to the loop structure of the rigid back-
bone, which we discuss below, and may explain why
the original relaxation method of Feng and Sen® was
inaccurate. Sizes L =10 to 28 are considered. Calcu-
lation times per sample range from 8 s for L =10 to
300 s for L =28 on an IBM 4381 computer.

Rigid backbone.—Results for the bond-strain distri-
bution of the L =12 samples are displayed as a histo-
gram in Fig. 1. The distribution has two peaks, one
centered approximately around the applied strain per
bond and the other one at zero strain. The bonds in
the first peak are identified as being on the rigid back-
bone. Except for a few bonds near the boundaries, the
bonds belonging to the rigid backbone are the same
when boundary conditions are changed to compute
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FIG. 1. Histogram for logarithm of the number of bonds
N having a strain € within equally spaced logrithmic intervals
of 0.1. The data point (lozenge) at € =101 is the number
of bonds with a strain € <107, The data are for L =12
and p = p.n=0.65. The arrow indicates what the strain in
each bond would be at p=1.
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other elastic moduli. We find also that the distribution
of local strains is independent of the bond orientation
in contrast to the situation at p =1 where the bonds
orthogonal to the applied strain stay unstretched: This
statistical isotropy near the percolation threshold is
completely analogous to the situation encountered in
ordinary percolation. Np, the number of strained
bonds, is evaluated for a few hundred sample realiza-
tions of size L =10 to L =28. The fractal dimension
of the backbone dpg=1.94%3% is obtained directly
from the plot in Fig. 2 of log;oNp versus log;oL. This
result should be contrasted to the usual percolation
result?® dgg=1.62 +0.02 which indicates that the rigid
backbone is much more compact than the usual one.
dgg for the rigid backbone is in fact close to the upper
bound dgg=2. Figure 2 also shows a log-log plot of
the average elastic modulus C;; vs L. The slope gives
f/vcen=1.35 £0.1 which is consistent with the result
of Lemieux, Breton, and Tremblay,'? f/v.,=1.35
+0.25.

Figure 3 displays a typical realization of the rigid
backbone. We have explicitly checked that the un-
strained bonds (dotted lines) can be removed without
affecting the rigidity of the structure. At first sight,
the presence of many single-thickness strands may
seem surprising but they are a feature of the linearized
Hamiltonian Eq. (1). The response in the linear prob-
lem is the same under tension and compression:
Clearly, single-thickness strands have an elastic
modulus under tension and so in the linear problem
these strands are part of the rigid backbone. Note that
these are not singly connected bonds: They always oc-
cur in ‘‘parallel’” with other bonds to form the rigid
backbone (sometimes the boundaries play the role of
the parallel bonds). In the nonlinear problem, these
strands are unstable under compression, while in the
linear model, they are unstable to forces other than
those applied at the boundaries (e.g., gravity).
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FIG. 2. Plotted against logL, on the left-hand logarithmic
vertical scale, the number of bonds on the backbone Np
(lozenges), and on the right-hand logarithmic scale, the
elastic modulus Cy; (triangles).
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FIG. 3. Typical realization of the backbone for the linear-
ized central-force problem on the random triangular net at
P = peen=0.65. Dots between sites indicate occupied but un-
stressed bonds.

The most important feature of the rigid backbone is
that there are no singly connected bonds which carry
all the stress in contrast with the bonds that carry all
the current in the random resistor network. The back-
bone consists of loops and, as we show below, loops
appear on all length scales.

Infinite rigid cluster.—The following algorithm sheds
light on the structure of the rigid spanning cluster (in-
cluding dangling ends).?! By a rigid cluster, we mean a
set of sites which, under any conceivable applied force,
are completely rigidly connected by bonds, i.e., which
satisfy the Maxwell condition?? f—c —3 <0, where f
is the number of degrees of freedom, i.e., twice the
number of connected sites, and ¢ the number of con-
straints (which in general differs from the number of
bonds).

We first generate a set of occupied bonds which is
then scanned for rigidity by the following iterative pro-
cedure. We start with the basic rigid unit, a bond, and
look for adjacent bonds forming the simplest rigid
cluster, a triangle. At first, the rigid cluster grows lo-
cally by forming triangles, that is by annexing pairs of
bonds? that form a closed loop from the rigid cluster
back to the rigid cluster. Possible realizations are
shown in Figs. 4(a) and 4(b). When the rigid cluster
can no longer grow in this manner, it becomes a single
generalized rigid part and other adjacent but not yet
rigidly connected clusters start to grow independently
by the same rule.2* When that process is complete, it
is repeated with the generalized rigid parts as basic
units; i.e., triangles made up of the generalized rigid
parts are found as in Fig. 4(c). The rigidity property of
a cluster is a property of the whole cluster and is very
different from the connectivity property of ordinary
percolation. To illustrate what we mean, consider cut-
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FIG. 4. Some examples of rigid clusters. (a),(b) Clusters
that would be found at the first level of iteration. (c) ‘“‘Gen-
eralized triangle” found at the second level of iteration. (d)
More complicated loop structure that is missed by the trian-
gle rule.

ting any one bond in Fig. 4(c): The cluster is reduced
to four rigid clusters. In ordinary percolation cutting
one bond can at most divide a cluster into two parts.
These observations are consistent with a growth of the
backbone above threshold which is more rapid (small-
er value of B/v=d — dgg) in the rigidity problem than
in ordinary percolation.

It is quite possible a priori that elasticity percolation
is controlled by the clusters found at the first level of
iteration and that loop structures like those of Fig. 4(c)
are irrelevant. To test if this is the case, we used the
scaling technique of Kirkpatrick!? to calculate the criti-
cal probability for rigidity percolation using only the
clusters found at the first level. We found p,
=0.745 £0.01. We then used the same scaling tech-
nique to find the critical probability for rigidity per-
colation using the clusters found by iterating the trian-
gle rule on all length scales. We found p.=0.70
+0.01, clearly indicating the importance of loops.
This p, is still larger?® than p.., for two reasons. The
first is that our algorithm only includes the simplest
loop structures and misses higher-order loops such as
that of Fig. 4(d). The second reason is that single-
thickness strands of bonds do not satisfy the Maxwell
condition. As is clear from Fig. 3, these are an impor-
tant part of the backbone. Despite the latter difference
between the rigid backbone and the infinite rigid clus-
ter as defined here, we expect that both have the same
qualitative loop structure.

In conclusion, we have shown that rigidity percola-
tion in the central-force model introduces a qualita-
tively new type of percolation problem. In this prob-
lem, ‘‘connectivity’’ is not local but long range and
loops on all length scales are the most important
feature of the percolating clusters in the sense that
they provide the rigid structure. The fact that triangles
on all length scales (or more generally loops) provide
the rigidity clearly demonstrates that the central-force
model does not renormalize into the bond-bending
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model as has been suggested earlier by other groups.
These new types of percolation clusters are clearly an
interesting theoretical problem but this problem would
be of limited physical applicability if it only occurred in
the two-dimensional central-force model. However,
the long-range nature and the loop structure (or
higher-dimensional generalization thereof) of the clus-
ters is most likely a general feature of all elasticity per-
colation problems where the bonds introduce less than
d constraints per bond in d dimensions. Phillips and
Thorpe’ have suggested that chalcogenide glasses of
the type Ge,S;_, are a physical realization of such a
rigidity percolation problem because of the weakness
of the energy associated with the dihedral angle.
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