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A theory is presented to explain the statistical properties of the growth of dye-laser radiation.
Results are in agreement ~ith recent experimental findings. The different roles of pump-noise in-

tensity and correlation time are elucidated.
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In recent years the dye laser has been the subject of
great interest, becoming a prototype nonequilibrium
system in which random fluctuations of a control
parameter are known to be important. Indeed,
anomalous steady-state statistical properties of dye
lasers have been explained in terms of stochastic
models which include a fluctuating pump parameter. '

Recent experiments2 on the transient statistics of dye-
laser radiation evidence two separate time regimes
dominated respectively by quantum and pump noise.
The first regime is associated with the behavior close
to the initial unstable state and the second with the
behavior close to steady state. Evidence for two time
scales is also obtained through the study of the time-
dependent properties of the dye-laser intensity. 3 In
the models used to study steady-state properties, quan-
tum noise has been generally neglected, although it
has been shown that it might be important in some
cases (Lett, Short, and Mandel'). Quantum noise is,
however, essential to describe the transient behavior
associated with the decay of an unstable state. In fact,
the experiments by Roy, Yu, and Zhum2 3 confirm our
earlier suggestion, 4 based on the analysis of a simple
bistable one-variable model with multiplicative white
noise, that transient experiments could be used to
disentangle the effect of multiplicative and additive
noise.

In this Letter we present a theory for the transient
radiation statistics of the single-mode dye laser. Our
theory considers the stochastic process of the complex
field amplitude E= Ei +iE2, and it is based on a sim-
ple direct approximation for this process. Within this
theory we obtain results which are relevant for the two
approaches generally used to describe transient radia-
tion statistics. The first approach focuses on the time
dependence of statistical properties of the laser intensi-
ty, and in particular on the transient enhancement of
its variance. 5 The second approach, followed by Roy,
Yu, and Zhum, 2 characterizes the relaxation process in

terms of the statistical properties of the times for
which the laser intensity has grown to a given value
(passage times). 6 An earlier analysis of passage-time
statistics is due to Fox.7 Our results for the passage-
time statistics are in good quantitative agreement with
the experimental results. The variance of the
passage-time distribution is seen to be sensitive to
pump noise even close to the unstable state. In addi-
tion, we describe the role played by the two parameters
which determine the pump noise (noise intensity D
and correlation time r) We f.ind that the effect of
pump noise is partially compensated as a result of its
finite correlation time. As regards statistical properties
of the laser intensity we predict a reduction of
anomalous fluctuations due to pump noise. This
reduction is again partially compensated by the finite
correlation time ~ We f.inally propose experiments
closer to threshold than those of Ref. 2, to get a
stronger evidence of all these effects.

Our dynamical model is given by the following
Langevin equation for the complex field amplitude E:

aE(t)/Bt = a(t)E ~ IEI E+K—.g(t).

Here g( t) is a complex Gaussian white noise with tem-
poral correlation (((t)('(t')) =25(t —t') which ac-
counts for quantum noise. Pump fluctuations are tak-
en into account in the parameter a ( t) = ao+ u D q(t)
where q(t) is a complex Gaussian noise with zero
mean and correlation

(g(t)q (t')) = (I/v)exp[ —
I t t'I/~]—

The validity of this model to describe the transient
dynamics of the dye laser can be considered as well es-
tablished after the good comparison obtained between
experimental results and numerical simulations by
Roy, Yu, and Zhum. 2 The relevant physical quantity
is the laser intensity I(t) = IEI . A solution of (1) for
the process l(t) can be obtained when quantum noise
is neglected:

1(t) =1(0)exp(2[aot+ a)(t) ] } 1+231(0)J dt'exp[2[aot'+ co(t') ] j

where cu(t) =JD f dt'Req(t'). The solution can be seen as a mapping between the value of 1(t) at time t and
the value at the initial time I(0) for a given realization of the pump noise q(t). Quantum noise neglected in (2) is
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essential to trigger the decay from the unstable state
1(0)= 0. Close to this state nonlinear terms and

pump fluctuations can be neglected in (1). The solu-
tion of (1) in such a regime can be written as

r t

F(t) = e"h(t), h(t) =K~ dt'e "((t'). (3)

The complex process h(t) is a bivariate Gaussian pro-
cess of zero mean and variance ( ~

h ~ ) = (e/ao)
x(1 —e '). For times much larger than ap ', h(t)
becomes a time-dependent random variable h with
variance e/ap. In this time regime the realizations of
the stochastic process E(t) are very close to trajec-
tories in which quantum noise vanishes but with a ran-
dom initial condition E(0) = h. Our approximation for
the process defined by (1) is then to use the mapping
(2) but with the initial condition replaced by the pro-
cess h(t) Expl.icitly we have

Ih I2(t)exp[2[apt+ ~(t) ] ]

I+23 lhl2(t) j, dt' exp[ 2[ aot' +c0(t')] }
'

(4)
This gives rise in a natural way to a process which is
dominated by quantum noise close to the unstable
state (early times) and by pump noise after leaving this
state. Our approximation is a generalization of the
quasideterministic theory. s This theory has been suc-
cessfully applied to the study of the transient statistics
of an ordinary laser intensity. 9 An extensive analysis
of the validity of this extension for a simple process in-
volving multiplicative noise was given in Ref. 4.

We first obtain the statistical properties of passage
times from our approximation given by (4). One is in
general interested in passage times which determine
the time regime in which the system leaves the un-
stable state. This regime corresponds to an intensity
range beyond the immediate vicinity of the unstable
state and also far from the final equilibrium state. The
first condition allows us to approximate h(t) by h.

D/[2ap2 (1+A. D/ a)p21

W(X) = WD=o(X)exp X2To
I+~D/a, 2 '/'

From this it follows that

In order to obtain the passage time t to a given refer-
ence value of I we note that the values taken by the
process cu(t) at time t can be obtained replacing cu(t)
by vQo. (t), where v is a Gaussian variable of zero
mean and unit variance, and 0(t). = (cu (t) ) = Dt
—D7 (I —/

' '). Equation (5) then gives

t + vga(t) = In(1/~h ~2). (6)

Solving (6) for t gives the passage times as a function
of the stochastic variables h and v. Statistical proper-
ties can be obtained from the generating function
W(X) = W„(X)= (e "'), where the bar indicates
average over v and the angular brackets average over
the distribution of h. For the sake of clarity we first
consider the white-noise limit (r = 0) for q(t). In this
limit (6) is easily solved for t. At this point we recall
that in the absence of pump noise (D =0) the asymp-
totic value for small e of the mean first-passage time is
Tp = ( 1/2ao)1n(ao1/e ) . This is a large quantity for
small e. Expanding the solution of (6) for t to second
order in D'/2v/2ap Tp/2 and to first order in
ln( ~ h ~ ap/~)/2ap Tp we obtain after averaging over h

DvW„(~)= W, o(~)exp -~
2ap

Dl/2 T 1/2 vo

where WD o(A. ) = I [(A/2ao) + 1]e ' is the
first-passage-time generating function in the absence
of pump noise. The result for WD o(X) was also
derived by Haake, Haus, and Glauber. " Averaging
over v without further approximation gives

(8)

The second condition allows us to neglect nonlinear
terms in our mapping. Equation (4) is then approxi-
mated by"

1(t) —
~ h ~2 exp(2[apt+ u)(t) ] ].

( t ) = ( t ) D =o + D/2 a p2 = To —( I/2 ap )P ( I ) + D/2ao2,

DTo D2 1, DTo D2
((b, t)2) =(t') —(t)2=((b, t)2)D=o+, +,=,p'(I)+, +

ap 2ap 4ap a0 2ao
(10)

~here $(l) is the digamma function. '2

In the situation of actual interest in which the pump
noise is not white (ra0), (6) cannot be explicitly
solved for t. However, in the normal situation in
which ~ is small compared ~ith typical passage times,
D(t) can be approximated as o(7 ) —a(t —r)-and we.
can proceed as above. In the opposite limit r » t,

D(t) =0 so that the effect of pump noise disappears.

I

For r &( t we obtain the same results (7) and (8) but
with Tp replaced by Tp 7except in th—e factor
WD=o(A). As a consequence (t) turns out to be in-
dependent of 7 in this approximation and

((~t)'}= ((a t)'), ,+ — ', +, . (»)
Qo 2ap
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The correction due to multiplicative noise for (t) is
typically very small, so that the mean passage time has
a value essentially determined by quantum fluctua-
tions. For the variance we have obtained a negligible
contribution D2/2a04 and an important enhancement
due to the factor To in the DTo/a02 contribution. This
enhancement is reduced by the colored character of
pump noise, in agreement with the fact that the effect
of pump noise disappears as 7 ~. Such a reduction
becomes larger the larger the noise intensity D. The
values of the parameters of model (1) fitted to experi-
ments are2 an=2. 16x106 s ', A =2.64x106 s
a=0.0043 s ' D=3x104 s '

7 '=2.4x106 s
For these values of the parameters and a reference
value of I„=0.3 a/oA we obtain from (9) and (11)
(t) =4.45ps, ((bt)2) =11.32x10 ' ps2, ((b, t)2)
—((b, t) ) D ii= 2.51x 10 p, s . These numbers
agree very well with the results in Ref. 2. We note
that the contribution to ((At)2) due to the multiplica-
tive noise is around 20'/0 and the negative contribution
to ((At) ) due to the finite correlation time is only
about 2%. These differences cannot be distinguished
within the accuracy of the experimental data. We have
thus done simulations with larger values of D. Ac-
cording to (9) for a value of D ten times larger (t)
changes by less than 1%, while ((b t) 2) becomes dom-
inated by pump noise, ((ht)2) =34.06&10 2 ps2,
((ht)') —((b t)') D =a = 25.25x 10 '

p, s', and the
negative contribution due to the finite correlation time
is close to 10%. Figure 1 reports a comparison of the
numerical solution of Eq. (1) for large values of D and
the theoretical results. The agreement is very good
both for white and colored noise.

In spite of the good agreement found between our
results (9)-(ll) and those of the experimental and
numerical simulation we should remark here that the

generating function that we have calculated is for the
passage-time distribution and not for the first passage
times. Multiple crossing of a given reference value by
the process I(t) is a phenomenon which is enhanced
by multiplicative noise. The reference values con-
sidered here correspond to the time scale in which the
system leaves the unstable state. For these values pos-
sible multiple crossings occur for times which are close
to each other so that the passage-time distribution can
be identified for practical purposes with the
first-passage-time distribution. For larger reference
values the system enters the nonlinear regime dom-
inated by multiplicative noise and multiple crossing
becomes important. A characterization of this non-
linear regime is better given in terms of the statistical
properties of the intensity. This point of view corre-
sponds to the alternative approach to the study of tran-
sient statistics mentioned before. We have calculated
the mean value of Iand its variance 5(t) = (I2) —(I) 2

from our approximation (4) for the process I(t). A
comparison between our theory and a direct simulation
of process (1) for the experimental values of the
parameters used before is shown in Fig. 2 where very
good agreement is found. The effect of the different
noise parameters in the anomalous fluctuation
phenomenon characterized by the peak of 8 ( t) is
shown in Fig. 3. A novel feature to be noted is the
drastic decrease of fluctuations implied by a colored
noise with respect to the white-noise limit r 0. The
value b of the anomalous fluctuation is defined as the
difference in the value of 8(t) at its maximum and the
asymptotic value of 5 as t ~: 5=5(t~,„)—8(~).
It is seen in Figs. 2 and 3 that the value of 5 is slightly
affected by pump noise. Pump noise must be com-
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FIG. 1. Variance of the passage time as a function of the
pump noise intensity D and correlation time
(go= 2.16x 10' s '). The full curves refer to the theory
[Eq. (11)]and the circles io numerical solutions of Eq. (1).

FIG. 2. The variance of the intensity 5 as a function of aoi
for the experimental values of Ref. 2 e = 0.0043 s
D=3x10 s ', 7 '=2.4& }06 s '. The curves refer to the
quasideterministic theory and the numerical solution of Eq.
(1).
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FIG. 3. The calculated variance of the intensity 5 as a

function of aotand ao~ for ~=0.0043 s ', D =3&105 s

0

pared with the average pump parameter. When pump
noise is small, as for the experimental values of the
parameters in Fig. 2, 5 is slightly reduced with respect
to the case in which only quantum noise is present.
The effect of larger pump noise is seen in Fig. 3. In
this case 5 is strongly reduced for white noise so that
anomalous fluctuations disappear for large pump noise
with 5 0. However, this reduction of b, is compen-
sated by the colored character of pump noise which

partially restores the value of A. These results and the
ones obtained for the variance of the passage-time dis-
tribution suggest that experiments on the transient
behavior of a dye laser in a region closer to threshold
(small a) would be useful to emphasize the effect of
pump noise and also to evidence the role played by its
finite correlation time.
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