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Interacting Parastrings
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Interacting parastrings offer the alternative of constructing string theories directly in four (as well
as a number of other) space-time dimensions. These theories are consistent with Lorentz invari-
ance, Lovelace analyticity, and modular invariance. They are also derivable from actions in light-
cone gauge. For supersymmetric parastrings, the corresponding actions are supersymmetric.

PACS numbers: 11.17.+y, 12.10.6q

String theories are presently regarded as leading can-
didates for a unified theory of all interactions. If so,
then it is imperative that we understand a number of
intriguing features of these theories at a fundamental
level. Among these features are the critical dimen-
sionalities and the restrictions on internal symmetries.
For the currently popular models, ' 3 the critical
dimensionality is either 26 or 10, and for the super-
symmetric varieties the internal symmetries are limit-
ed to the groups SO(32) or Es S Es.~

The main objective of this Letter is to report on the
possibility of constructing nontrivial interacting string
theories which have critical dimensionalities different
from 26 or 10. To put this possibility in its proper per-
spective, it is convenient to view the existence of criti-
cal dimensionalities as arising from the requirement
of compatibility between quantum mechanics and
Lorentz invariance. Then, to quantize the dynamical
variables of the classical (super)string theories, one is
faced with two distinct options: (a) To insist on stand-
ard Bose or Fermi quantization of the dynamical vari-
ables and let the consistency of the formalism deter-
mine the critical dimensionality of the corresponding
theory. This leads to the critical dimensionalities 26
and 10. (b) To allow for the possibility of other critical
dimsionalities, and hence other Lorentz groups, and
see if there are quantization schemes which are com-
patible with them. In this way, one arrives at the para-
quantization of strings5 (parastrings). The physical
basis of paraquantization can be made plausible by not-
ing that if the spectrum of a given string theory does
not exclusively correspond to the experimentally ob-
served particles, then the relevant statistics need not
be exclusively Fermi and Bose.

It might appear at first sight that the two possibilities
stated above are diametrically opposite and have no
common features. To stress that this is not the case,
we would like to point out some of the properties
which are common to both approaches: (i) Both ap-
proaches lead to an increase in the number of physical

in which, contrary to the Bose and Fermi case, the re-
quirement that the (anti)commutator of two fieM
operators be a c-number is relaxed. The paraquantiza-
tion of string theories was carried out in Ref. 5. It was
found that the closure of the Lorentz algebra leads to
the critical dimensionalities

D =2+24/Q,

for bosonic strings and

(3)

D=2+8/Q,

for supersymmetric strings (Ramond-Neveu-Schwarz) .
In these expressions, Q is the order of parastatistics.
For the supersymmetric varieties, parafermions and
parabosons must have the same order Q. More recent-

degrees of freedom over what would have been ex-
pected from a four-dimensional theory with standard
Fermi or Bose statistics. (ii) In fact, the total number
of degrees of freedom is the same in the two ap-
proaches. (iii) Considered from a generalized Kaluza-
Klein point of view, the two approaches appear to be
different means to the same end: More-dimensional
string theories require compactification, 4 6 and this
leads to internal symmetries. On the other hand,
parastatistics are equivalent to some form of internal
symmetries, and this is equivalent to the extra dimen-
sions in a Kaluza-Klein setting. Therefore, it is
reasonable to conclude that there are no fundamental
issues which separate the two options. %hat distin-
guishes them is the physical basis upon which they rest
and from which their degrees of freedom originate.

Parastatistics7 are generalizations of standard Bose
and Fermi statistics. They are solutions of the trilinear
relations

[[a,',a„],,a(] = —2n, ,a„,

[[a~,a„l +,ai] = 0,
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ly, the derivation of the critical dimensionalities given
by (3) and (4) has been put8 on a more rigorous foun-
dation by a reformulation of the theory in which one
of the unnatural assumptions of the earlier approach
was relaxed. The new formulation is based on the
realization of the para operators in the form9

(5)

where the components A are ordinary boson opera-
tors if A is paraboson and ordinary fermion operators if
A is parafermion. The quantities e are elements of

the real Clifford algebra

Moreover, [e,A&] =0, a, P=1, . . . , Q. In this Let-
ter, for simplicity, we will confine most of the discus-
sion to the bosonic parastrings, although some results
on supersyrnmetric parastrings will also be given.

Consider the paraquantization of the bosonic open
string in the light-cone gauge. Using the realization
(5), we write the transverse string variable as

y'(r, cr) = f Hy'~(rr, r),

where

y') (7, o ) =x'~+ 2a'p'~7 + (2n')'~ X n ' 2[a„'~e '"'+ a(" e'"']cosno. .
N=1

The variables y' (~, a ) and their (para) canonical momenta satisfy the equal time commutation relations

[y'~(o. ) m~~(o')] =. i5'yg g(o. —0')

(8)

The rest of the development parallels that of the bosonic string in light-cone gauge. '0 One of the main differences
which arise is that for parastrings, the c-number term in Uirasoro algebra becomes dependent on the order of
parastatistics Q:

[T~,T„]= (n —m) T„+~+[Q(D —2)/12](n3 —n) 5~+„o. (10)

As discussed in Refs. 5 and 7, it is this dependence on
Q which leads to the critical dimensionalities given by
Eqs. (3) and (4).

Next, we turn to interactions. Following the analogy
with open bosonic string theory, we write down a
ground-state vertex operator for the open bosonic
parastring of order Q in the form

V(k) g e(}k .Y(0) }l2 (11)
where the momenta are taken to be transverse, colons
indicate normal ordering, and

[k y(0) ] = k Y(0) +Y(0) k. (12)

From this and the propagator b, = (P —M )

=27 P P =, g X na(' a(' —1, (13)
49~1 n 1

dual tree amplitudes can be constructed in the form

8)v = (O, kg~ V(k)v ))5 V(k2) ~0, k(). (14)

Not surprisingly, the four-point amplitude is a P func-
tion.

In any nontrivial string theory, it is essential that in-

teractions be compatible with the critical dimensionali-
ties (3) or (4). It will be recalled that in dual models,
critical dimensionalities first arose in connection with
the analytic behavior of the one-loop corrections to the
dual amplitudes. "'2 For example, in the open boson-
ic parastring, in the notation of Ref. 12, a typical
planar one-loop amplitude with M external lines is
given by

~i M-1
g ( )d ~t d

—) —0(2 —D)/12 IV-1 —g(2 —D)j24~1+) ~l ~1
m 0 i "i 0

2'M
[f(q')]"- ' (y ) ' ' (»)

lnq 1(J

Here 8 is a step function, QIJ is related to a Jacobi function, and W'is related to q by the relation lnq ln W'= 2n 2. In
this expression, for D «26, the integrand is meromorphic at q =0 only at critical dimensionalities given by Eq.
(3). Similar statements hold for other loop amplitudes. These results lend further support to the nontriviality of
these critical dimensions.

%e conclude this Letter by discussing a number of additional properties of parastring models:
(i) It was pointed out in Ref. 5 that a parastring model of order Q behaves in many respects like a string model

which possesses an SO(Q) symmetry. In contrast to Chan-Paton-type symmetries which the string might also car-
ry, the SO(Q) symmetry is distributed over the entire length of the string for both open and closed boundary con-
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ditions. For example, the massless vector paraboson
of the open bosonic parastring belongs to the Q-

dimensional representation of SO(0).
(ii) In the spectrum of a given parastring, there are

states which obey ordinary statistics. For example, the
closed bosonic parastring has a massless spin-2 states

which is a boson and which can be identified with the

da. dr[ —o.
' 'Bp Y't)P Y'+ij7 pPBpy]

(18)

Here Y'(rr, r) is not a ten- but a four-dimensional
transverse vector paraboson of order four, and Q is not
a ten- but a four-dimensional Majorana (not
Majorana-Weyl) parafermion of order four. Q is also a
spinor in rr-r space. It is straightforward to check that
this action is invariant under the supersymmetry
transformations

8 Yi= C.7$,

Sy = (2o') 'C7 &(Qr)p Y„)~,
(19)

where C is a normalization factor, and e is a constant
four-dimensional Majorana fermion as well as a two-

spinor in o-r space. Similar actions can be written

C( ) 4( I ) —g(D —2)/2 4mtmv if ( 2s i ) i

—2g(D —2)

The expression for E' is modular invariant at the criti-
cal dimensionalities given by (3).

(iv) For supersymmetric parastrings, the critical
dimensionalities given by Eq. (4) are in one-to-one
correspondence with the space-time dimensionalities
in which supersymmetric Yang-Mills theories can be
constructed. ' Given the intimate connection between
the zero mass sector of superstring theories and super-
symmetric Yang-Mills theories, this is of course not
surprising. On the other hand, the critical dimen-
sionalities (4) as well as other properties of the super-
symmetric parastrings were first studied within the
framework of the original Ramond-Neveu-Schwarz
formalism. It would therefore be of interest to see if
these parastring theories can be reformulated in terms
of the new superstring formalism of Green and
Schwarz. This turns out to be the case. Here we give
an illustrative example, leaving the details to a forth-
coming paper. Thus, consider the D =4, Q =4 super-
symmetric parastrings. In the notation of Green and
Schwarz, 2 the analog of the Green-Schwarz light-cone
action for this case is

graviton.
(iii) The planar one-loop amplitude with M external

closed parastring tachyon states is, in the notation of
Ref. 12, given by

E =„d"(Imr) -'C(. )r„(.), (16)

where F„(r) has the same form as that given in Ref.
12, and

(17)

down for supersymmetric parastrings in D=6 and
D = 3 space-time dimensions. A more detailed
description of the properties of these theories is in
preparation and will be reported elsewhere.

Most of these results were reported by one of us
(F.M.) at the symposium held at the University of
Chicago, 18-19 January 1986, in honor of Yoichiro
Nambu. We would like to thank Abdus Salam, Louis
Witten, and Xizeng Wu for discussions. This work
was supported in part by the Department of Energy
under the Contract No. DOE-AS-2-76ER02978.
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