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Exact Integrability of the One-Dimensional Hubbard Model
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The 1D Hubbard model is shown to be an exactly integrable system. A "covering" model of 20
statistical mechanics which I proposed recently was shown to provide a one-parameter family of
transfer matrices, commuting with the Hamiltonian of the Hubbard model. I show in this work
that any two transfer matrices of a family commute mutually. At the root of the commutation rela-
tion is the ubiquitous Yang-Baxter factorization condition. The form of the R operator is displayed
explicitly.

PACS numbers: 05.50.+q, 64.60.Cn, 75.10.Lp

The 1D Hubbard model is of considerable interest in

solid-state physics. It is exactly solvable by the Bethe
Ansatz. ' In this work I establish its exact integrability
as well. Exact integrability, as is well known, is a very
powerful result and is encountered in several classic
models in statistical mechanics, such as the 2D Ising,
the XYZ, and the eight-vertex models. A commonly
accepted feature of exactly integrable models is the ex-
istence of an infinite number of conserved
"currents, " and of their mutual commutation. This is

usually established, for a quantum Hamiltonian, by the
identification of a "covering*' lattice-statistical model
with the property that a one-parameter family of
transfer matrices commutes with the Hamiltonian.

The mutual commutation of two transfer matrices (of
the same family) establishes the exact integrability.

In a previous work, I identified a new model in 2D
classical statistical mechanics, and showed that it is a
"covering" model for the 1D Hubbard model (in the
above sense). In this work, I prove that two transfer
matrices of the same family commute mutually. This
is shown by a demonstration that the ubiquitous star-
triangle3 4 (Yang-Baxter) relation holds in this case as
well.

The model considered here consists of two six-
vertex models, obeying the free Fermi condition and
coupled in a particular way by a diagonal vertex. The
transfer matrix is written as T = trg Y, with

Y = L~gLiv i g
. Li g, L~~ = 1~l„~1~, with /„~ = S„~T„

S„=—,'(a+b)+ —,'(a —b)o„'tT'+c(a„+o. +H.c.),

and I =exp( —,
' htT'r'). T„has the same form as

S„With o.'S replaCing T'S

The model thus consists of two species of Pauli ma-
trices o. and 7 residing at sites n=l, . . . , N, and
periodic boundary conditions are assumed. The spin at
site g is an auxiliary variable (the ghost spin) corre-
sponding to a horizontal arrow, and Y is the mono-
dromy matrix. The model is characterized by three
distinct parameters a/c, b/c, and h, with a2+ b2= c2

(we set c =1 in the following). In Ref. 2 I showed
that T commutes with the Hubbard Hamiltonian H
provided that

(2/ab) sinh(2h) = U, (2)

and further that 0 is a logarithmic derivative of T.
(Here U is the Coulomb constant in H). Let us note
that L~ is asymmetric in n and m.

Next let us consider two transfer matrices (T and
T') with parameters ai, bi, hi and a2, b2, h2, both obey-
ing the free Fermi condition, and examine the com-
mutator. Clearly

YY (L+g L+g ) (Li g Li g )~

t

Taking the trace over gi and g2 of the two equations
and subtracting, we obtain the commutator [T,T'j.
Baxter3 noted that the commutator vanishes provided
that the two expressions are similarity transforms of
one another, and found a local relation that is suffi-
cient. This may be written in the form

L3 2L3 iRi2= Ri2L3 2L3

(with gi 2, g2 1, and n 3). The operator R i2
does not depend on the site 3 (or n), and provided
that it is invertible, the commutator vanishes. The
remainder of this paper is concerned with the demon-
stration that Eq. (3) holds in the present model, and
with the determination of Ri2.

As a prelude to the calculation let us first consider
the infinitesimal case 82=e (a2=cos82, b2=sin82,
c2= 1), to first order in e, and h2 determined from Eq.
(2). This gives L3 i =P3i[1+e03 i] where P3i is the
permutation operator and

H3 i
= ( CT3 cri + H.C. )

+ (cT- T)+ 8 U(aiTi+afT[). .

1986 The American Physical Society 2453



VoLUME 56, NUMB, R 23 PHYSICAL REVIEW LETTERS 9 JUNE 1986

Thus to order e, T' = T(0) [1+~H+ O(~') ], where H
is the Hubbard Hamiltoman gH„,„+1. We know al-
ready (from Ref. 2) that T must commute with T' to
this order, and examine if this commutation relation
can be used to extract R12 [to O(e)]. Writing R12
= P12 V12 and Viz = U12+ e H'12+ O(e2) we find from
Eq. (3) two equations to order ~: L»U12= U»L31

U12= L21', and

L21H32L21 L31 H32L31 W 13L 31 L21 W12. (4)

The left-hand side of Eq. (4) is also encountered in

Ref. 2, where it is noted to be M2 1
—M3 1, with Ma

non-Hermitean operator [Eq. (8) of Ref. 2]. This re-
markable separation of variables requires only the free
Fermi condition and may be used to write the general
solution for N,

21~12 M2, 1 +fli IV13L31 M3, 1+fli

only. Writing M3 1
= L3 1'Q3 1, we have

~12= L21 Q2, 1L2, 1 +L2. if 1

~13 L31 Q3, 1L3, 1 + f1L3, 1

Demanding the equality of the two expressions
(2 3) we find a constraint

L;,' (8, , ) L.;,' = —,
' [I.;,',f, ] (6)

with 8 = (Q —Q)/2. However, I showed in Ref. 2

that provided that Eq. (2) holds, 83 1 cl[L3 111 ],
where a= (c2+2b2)/4ab. Therefore, f1= —2aIi 4,

and R12 exists and can be found to O(~).
We now turn to the general problem, Eq. (3), and

seek to determine R. The symmetries of the model
lead us to require the commutation of R12 with the
operators ( symmetry generators ) (1) o fa 2r fr 2 (con-
jugation of all arrows), (2) o.f+o.f (conservation of
particles of o. species), and (3) rf+~f (r species).
Further, R should be invariant with respect to the in-

terchange of a 's and r 's
The most general form of R subject to the above

may be written as

R12 go+ gl~frf+ g2(~f~3+ r[TI) + g30/&2+ g4(01 0 2 + 7'1 r2 +H.c.) +g5(a j&/+ 0(7 f)

+g6~[~frfrl+g7[(~1 ~2 ~2 1 )r[+ (&1 &2
—&2+&1 )0 f]+gs(0 1+0'2 +H.C. )(ri+r2 +H.C. )

+g9[(01 02 —02 01 )&I+(ri 2
—&2 &1 )0/]+gio[(01+02 +H.C. )7.f7/+(~1+7.2 +H.C. )a f(r)]

+gll(&1 &2 —&2 &1 )(Tl 72 —T2 rl ).
We have twelve parameters go, . . . , gii at our disposal
and wish to satisfy the (linear) operator equation (3).

The algebra involved is tedious. I used the symbolic
manipulation package REDUGE2 in order to perform the
calculations on a computer. The problem and the
method used to solve it seem to be general enough to
justify some discussion. The basic idea used was to
convert Eq. (3) into a partial differential equation, by
the use of a representation of spin operators as partial
derivatives on the space of polynomials. [Such a
representation is natural6 if we construct unnormalized
spin coherent-states ~z) = exp(zs ) ~ t ) and represent
abstract spinors by "wave functions" Q(z) = (z~p). ]
Specifically for s = —,', at a site i, we may write

,
'- e/ax„, - - x, -x,2a/ex. . .'-1-2X, a/ax„

and the wave functions ) t ) I, [ $ ) xi. Associat-
ing xi,xz, x3 with the three 0's and yi,y2,y3 with the
three T's, we see that manifold of 64 states is spanned

by the wave functions 7r( )x"'in (y;) ', with n;, m;
=0, l. %'e use the symmetries mentioned above, and

l

I

the tranSfOrmatiOnS generated by ofrr2 Or rf.72, WhiCh

reverse all arrows on one sublattice, thereby negating
the "fields" hi and h2, and negate all g„'s with n odd.
This enables us to restrict the considerations to the
nine (irreducible) wave functions xi,x2,x3 xiyi, xiy2,
xiy3 x2 y2, x2y3, and x3y3. The Yang-Baxter operator
[left-hand side of Eq. (3) minus the right-hand side] is
applied to these states and the coefficients of all the
states in the resultant are required to vanish. Also the
conjugates (h& —hi, gz„y 1 g2„+1) are required
to vanish. A total of 144 linear homogeneous equa-
tions result. Eleven of them suffice to determine the
g's: This is an overdetermined set of linear equations.
By explicit calculation, I checked that all the expres-
sions vanish identically with a choice of parameters.

Let us define a3 =—ai a2+ bi b2, a4 = ai a2 —bi b2,
b3 = b201 b102, b4= b201+ b102, s+ = slnh(h2+ hl ),
s —= sinh(h2 —hi), c+ —= cosh(h2+ hi), c —= cosh(h2
—hi). Further, let Ki =—go —g6 and K2=—g4 —gio. In
terms of these, we find the relations g3 gi g9 g7,

g7 2 ~- ~4+1~ gs C+ ~3+2' g11 ~+ ~4

g4+gio=c-b3K1', gi+g5= 2 ~ 04Ki', gi —g5= 2 &+b3K /(b —b )'

go + g6 + 2g2 = c 3K01 i go + g6 2g2 = c+ b4K2/( b2 bi ) ~
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These ten equations enable us to express all the g's in terms of Ei and E2. The final equation reads

s h(h —h ) (b2-b,') o h(h, —h, ) (b,' —b, )

Ei sinh(h2+ hl) (a2b2 aibi) cosh(h2+ hi) (a2b2+ aibi)

Consistency requires a single constraint (obtained by equating the two expressions)

ai bi/a2b2 = sinh(2hi)/sinh(2h2).

(9)

(10)

This condition, together with the free Fermi condition (ai2 + bi2 = 1 = a22 + b22 ) is then sufficient to guarantee the
commutation of the two transfer matrices. From Eq. (2) we see that Eq. (10) is not a new constraint; it is au-
tomatically fulfilled if we require that the two transfer matrices commute with H [i.e. , Eq. (2)l. Thus, the one-
Parameter family found by requiring commutation with H is fundamental. This situation is identical to the one en-
countered in the eight-vertex model. 3 7

The structure of the R operator is rather unwieldy and is best summarized in the following equations, describing
its oPeration on the set of states po = 1, Qi ——x, , |It, = x2, y3 = x,y, , y4

—x,y, y, = x», ~6 x2yi.

R~o= Ki(c—a3+ s ac)4o Riiti = Kiilti +Et(c b3+ s bg)42, Rijt2= Kiilt2+ Ki(c b3 —s b4)fatti,

Rilt3 =
2 2 (c+ b4+ s+ b3)$3+ K2(ilt4+$6) + K2(c+ b3+ s+ b4)ilats,

b2 —bi2

Rifi/ K2(llt3+il $) +
2 2

(C+ bg s+ b3)$4+ E2(c+ b3 —s+ b4)itt6 ~

2
Rks = K2(c+ b3+ s+ b&)$3+ K2(ilt&+$6) +

2 2
(c+ b4+ s+ b3)$$.

b22 —bi2

The other equations may be inferred by use of ap-
propriate symmetries. Let us note the symmetry of R;
R2i = Ri2.

Finally, I remark on a curious side result. If we ro-
tate the lattice through n/2 (and exchanging a b),
the column-to-column transfer matrix may be shown
to commute with another Hamiltonian. Linearizing
Eq. (3) about &2=&i we note that the first-order term
in the variation has the form of Sutherland7 for the
commutation of the transfer matrix (column-to-
column) with a Hamiltonian. The latter is the sum of
two-body terms, each of the form of Ri2 [Eq. (7)]
with the first-order variations of the g's substituted.
The Hamiltonian is not Hermitean (Sg7a0), but ap-
pears to be intimately related to the Hubbard model.

The work reported here should be useful in under-
standing further the properties of the 1D Hubbard
model. Generalization of the statistical model to allow
for the eight-vertex configurations obeying the free-
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