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Resolution of the Operator-Ordering Problem by the Method of Finite Elements
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The method of finite elements converts the operator Heisenberg equations that arise from a
Hamiltonian of the form H = P2/2+ V(q) into a sei of operator difference equations on a lattice.
The equal-time commutation relations are exactly preserved and thus are consistent with the re-
quirements of unitarity. We consider general Hamiltonians of the form H(p, q) and show that the
requirement of unitarity uniquely determines the operator ordering in such Hamiltonians. (The or-
dering procedure involves a set of orthogonal polynomials which are not widely known. ) Our result
shows that it is possible to treat quantum spin systems by the method of finite elements.

PACS numbers: 03.65.—~, 11.10.Ef, 11.15.Ha, 11.15.Tk

In this Letter we consider Hamiltonians of the form
H=H(p, q). We address the problem of converting
the operator differential equations of motion

q(t) =

into a system of unitary-operator difference equations
on a time lattice, By the term unitary we mean that
the difference equations exactly preserve the equal-
time commutation relations

[q(t),p(t)] =i (2)

H(P, Q), P = — H(P, Q),

at each time step. We show that if the method of fin-
ite elements is used to construct the operator differ-
ence equations' then the ordering of the operators p
and q appearing in the Hamiltonian H(p, q ) is unique-
ly determined by the requirement of unitarity.

The method of linear finite elements approximates
the operators q(t) and p(t) by a time sequence of
operators q„and p„(n=0, 1, 2, . . .), where t=nb
and h is the lattice spacing. The method consists of
making the replacements

q(t) (q„+i —q„)/k, p(t) (p+i —p„)/h,

q(t) —q„+q„+i)/2, p(t) (p„+p„+,)/2
(3)

in (1). The derivation of (3) is given in Ref. l.
Thus, on the lattice, the differential equations (1)

become

H(P, g),P —g, H(P, g) (8)

and to show that it vanishes.
It is crucial to remark that in general (8) does not

vanish. This is because the commutator

t)-=fgP] (9)

is not a c number even though [q(t),p(t)] is; the
quantity 8 is an operator because it contains the
unequal-time commutators [q„,p„+,] and [q„+,,p„].

To investigate (8) we may assume that H is Hermit-
ian and that H(P, Q) can be expanded in a series of
Hermitian terms H~„(P,Q), where H „(m, n ~ 0) is
a sum of monomials containing m factors of P and n
factors of Q. We can examine each term H „of the
series independently. For example, H2 2 has the form

where we have used the notation

g =- (q„„q„)/h, -P = (p„„-p„)/h, -
g= (q„+q„+i)/2, P= (p„+p„+,)/2.

To establish unitarity one must prove that

[qn+i, pn+il = [q„,p„] (n =0, 1, 2, . . .).
We can establish (6) if we can explicitly show from the
operator difference equations (4) that

[Q,P]+[QP ]=0. (7)

To see this we substitute the definitions in (5) into (7)
and expand the commutators; this calculation directly
shows that (7) implies (6). Thus, our objective is to
examine the expression

H» = aPg'P+ bgP'g+ c(P'g'+ g'P') + d(PgPg+ gPgP) (10)
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where a, b, c, and d are real constants. To illustrate our procedure we examine H2 2 in detail. We compute

H, P —Q, H
I

= (2c —a —d)(HQP+PQH) + (a —b)(QHP+PHQ) + (b+d —2c)(HPQ+ QPH). (11)

Thus, unitarity requires that 2c —a —d =0, a —b = 0, b+ d —2c =0. The solution to these equations is a = b and
d=2c —b, where b and c are arbitrary real constants. Thus, it appears that there is a two-parameter family of
Hamiltonians of the type H2 2 which satisfy unitarity on the lattice. Indeed, H2 2 can be written in the form

H2 2
= cT2 2+ ( c —b ) G2 2,

where

T2 2(P, Q) =PQ P+ QP Q+P2Q +Q2P +PQPQ+ QPQP (13)

H2 2(p, q) = —,
'

T2 2(p, q) + —,
' (15}

before going onto the lattice by use of (3).
What is remarkable is that given any Hamiltonian

H „(q,p) carrying out the above procedure shows
that there is always a unique form which is necessary
and sufficient in order that the equal-time commuta-
tors be preserved as in (6). In particular, we must
rewrite

H,.(p, q) =~T,.(p.q)+H 2, 2(p, q). -—(16)

where T~„ is the totally symmetric sum ( T form) of
all possible monomials containing m factors of p and n

factors of q. This process is then iterated until H~„ is
a descending sum of totally symmetric parts:

~ Tw, ~ (P q ) +P Tm —2n —2 C p q ) ,+ ~

To verify this assertion we must use the fact that
derivatives leave the T form intact. In fact we have

G, , (P, g)
= PQPQ + QPQP —QP2 Q —PQ2P. (14)

Thus, if we were given a continuum Hamiltonian of
the general form H2 2(p, q) we could reorder the
operators p and q [using the commutation relation (2)]
to make it take the form in (12) before making the
finite-element transcription (3). [This reordering of
operators of course produces additional simpler terms
of the form Hi i=a(pq+qp). ] However, we ob-
serve that G2 2(p, q) is trivial; using (2) we see that
G2 2(p, q) = —1. The above calculation shows that the
requirement of lattice unitarity forces us to preorgan-
ize the operators p and q in H2 2(p, q) in a unique way;
namely, the totally symmetric sum (T form) in (13).
For example, if we are given the Hamiltonian
H2 2(p, q) =5qp q, this Hamiltonian must be (unique-
ly) reordered by use of (2) as

the identities

T „(P,g) = (m+ n) T, „(P,Q),

T „(P,Q) = (m+ n) T „ i(P, Q).
(18)

In addition, we observe that commutators maintain the
totally symmetric form:

[Q, T „(P,Q)]= T „i(iP, Q, &),

[T „(P,g),P] = T „,, (P, Q, H),
(19)

H(p, q) =H(T, , ) =H(pq+qp). (20)

To order the operators of this Hamiltonian we intro-
duce a little-known set of orthonormal polynomials
S„(x) called continuous Hahn polynomials. 2 These
polynomials emerge from the simple observation that
T„„ is a polynomial function of Ti i', the defining
equation for S„(x) is therefore

S„(T, , ) -=T„„/(2n —1)!!.
The first few polynomials S„(x)are

(21)

So(x) =1, S,(x) = x, S2(x) = —,
' (x' —1),

S,(x) = —,
' (2-5x), S,(x) = —,', (x' —14x'+ 9),

S,(x) = „', (x' —30x'+89x),

S6(x) = „'0 (x6 —55x +439x2 —225).

where T ~i(P, Q, &) is the totally symmetric sum of
all monomials having m factors of P, n factors of Q,
and one factor of 9. Using (18) and (19) it is easy to
verify that the expression in (8) vanishes when
H(P, Q) is in Tform.

This ordering procedure applies to all Hamiltonians
H(p, q) which are polynomials in the variables pand q.
However, if H is a nonpolynomial function the order-
ing problem is much more challenging. For example,
consider a class of Hamiltonians of the form
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These polynomials have the following properties4: (i)
The generating function G(t) is

(r)=, ,i, = XS„(x)r". (22)

(ii) The orthonormality condition is

dx iv(x)S (x)S„(x)=8 „,
where the weight function iv(x) is given by

w(x) = [2 cosh(~x/2) ]

(iii) A recursion relation satisfied by S„(x) is

nS„(x) =xS„,(x) —(n —1)S„,(x).

(23)

(24)

(25)

H(x) = X a„S„(x),
n 0

where

a„= ~ dx w(x)H(x)S„(x).

Thus, from (21) we have

(27)

(29)

We have therefore represented H(pq+ qp) as an in-
finite sum of operators in T form. In the form (29) H
is directly amenable to lattice transcription and the
resulting operator difference equations automatically
pre, serve Unitarity.

As an example, consider the Hamiltonian H
= e' ~+ai', where c is a constant. For the exponential
function, the integral in (28) can be performed in
closed form and the result is a„=(tanc) "[1
+ (tanc) j'i Thus

H= [1+(tanc) ]' X (tanc) "S„(pq+qii)

His now in its unique Tform and therefore the result-
ing Heisenberg equations can be transcribed onto the
lattice.

An interesting and attractive application of this
analysis concerns spin systems. Although the finite-

The polynomials do not satisfy a second-order dif-
ferential equation but they do obey the second-order
functional difference eigenvalue equation

(1 —ix)S„(x+2i)+(1+ ix)S„(x 2i)—
= (4n + 2) S„(x). (26)

Now we return to the problem of ordering the
operator H in (20). Using the completeness of S„(x)
we expand H(x) as a series in S„(x):

element method is applicable to and useful for a
variety of problems in quantum mechanics and field
theory, all these problems are described by Hamil-
tonians whose variables satisfy the Neumann or
Heisenberg algebra [q,pl =i. However, there are oth-
er important Hamiltonians in physics whose variables
belong to other algebras. For example, the Hamiltoni-
an H = H(S„,S~,S,), where S satisfies the SU(2) alge-
bra, has not yet been studied in the finite-element ap-
proximation.

There is a simple and direct way to transcribe the
operator difference equations of such systems onto a
lattice. One can use any of several transformations:
the Holstein-Primakoff, Schwinger, Maleev, and Vil-
lain transformations express the spin operators in
terms of elements of a Heisenberg algebra. For ex-
ample, the Maleev transformation is

S = (4s+ 1 —p2 —q2),

S =Js (p —iq),

S, = —,
' (p'+ q' —1 —2s),

(&0)

where S2= s(s+1). Transformations such as that in
(30) share a common problem in that they convert
spin Hamiltonians into Hamiltonians of the general
form H(p, q) whose operators are not properly or-
dered. We have shown in this paper that all such
Hamiltonians have a unique operator reordering that
facilitates their analysis by the method of finite ele-
ments. We emphasize that our reordering prescription
does not change the physics of the Hamiltonian, but it
is essential for the mathematical consistency of the
operator difference equations.
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