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Dynamical Stability of Quantum "Chaotic" Motion in a Hydrogen Atom

G. Casati, "' B. V. Chirikov, I. Guarneri, '~~ and D. L. Shepelyansky
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A simple numerical reversibility test which proves useful in exposing the chaotic nature of classi-
cal dynamical systems is applied to the quantum model of a hydrogen atom in a microwave field.
The remarkable result is that, in spite of some apparent chaotic features, the quantum motion
proves to be perfectly stable in contrast to the high instability of the classical chaotic motion.

PACS numbers: 05.45.+1, 03.65.—~, 05.30.—d

The crucial way in which exponential instability of
orbits affects macroscopic reversibility is theoretically
well understood. In particular, it implies that non-
equilibrium statistical ensembles evolve in time to-
wards equilibrium. This approach to equilibrium does
in no way contradict the strict reversibility of the equa-
tions which describe evolution of phase densities.
Indeed, by integration backwards of the Liouville
equation, the initial distribution would eventually be
reassembled; nevertheless, should this integration be
continued still further in the past, an equilibrium dis-
tribution would again be approached.

It is an impressive demonstration of the unwieldy
character of exponential instability that this reversal of
time evolution cannot be carried out in practice on
computer experiments, where, through inevitable nu-
merical errors, the memory of the initial distribution is
completely lost after a while. Thus the numerically
computed time evolution will not reproduce backwards
the history of the system, except for a short time;
afterwards, approach to equilibrium will again show
up, and the initial distribution will be lost forever.
Needless to say, the exactly computed evolution should
in any case find its way back to the original state;
therefore, in order to explain irreversible macroscopic
behavior one must resort to some kind of coarse grain-
ing.

However, this lack of "practical" reversibility is a
distinctive mark of true dynamical chaos. ' Its ap-
pearance in computer experiments unambiguously
hints at a quite complex and sensitive nature of orbits.

The question of whether or not chaos persists in
quantum dynamics has already been the object of
many investigations. At the present state of know-
ledge, quantum mechanics places severe limitations on
the classical chaotic properties of the motion. In this
paper, we will inquire about the existence of any
"practical" irreversibility of quantum motion; as a
result, we will be able to give one more illustration of
quantum suppression of dynamical chaos.

Numerical experiments on time reversal of quantum
evolution of classica11y chaotic systems were already
described by Shepelyansky for thc so-called "kicked
rotator" model. Evidence was given there that
~hereas the classical rotator is chaotic and practically

irreversible the quantum rotator is not, and its evolu-
tion can be traced back to the initial state just by rever-
sal of phases in the Fourier expansion of the wave
packet (velocity reversal). Even more remarkably,
this reversibility is substantially unaffected by any
small change in the phases before reversal. Here we
present results of similar numerical experiments on
another quantum system subjected to a time periodic
perturbation: the one-dimensional model of a hydro-
gen atom in a monochromatic field. Our motivation is
not only to give another, more physical, example of
quantum stability. A morc important point is that the
kicked rotator is a very special model in that the quan-
tum motion is known to be always localized (in
momentum space) which implies a pure point quasien-
ergy spectrum and a recurrent quantum evolution.
Strictly speaking, there are values of the external
period, both resonant and nonresonant, which give
rise to a continuous spectrum. 5 However, the localiza-
tion picture looks fairly general.

Thus one may have some doubts as to whether
quantum stability ~ould persist even in those quantum
systems where the localization phenomenon is absent.
This is just the case for the one-dimensional hydrogen
atom, where we are faced with a more complex and
general situation. In particular, the quasienergy spec-
trum is here known to be continuous, which is espe-
cially obvious in case of delocalization. As is well
known, continuity of the spectrum is a necessary
feature of classical chaotic motion.

Let us consider the one-dimensional model of the
hydrogen atom in an external monochromatic, linearly
polarized, electric field specified by the Hamiltonian

0=p /2 —I/x+excos(tot), x & 0,

where e and co are the field strength and frequency in
atomic units.

It is known that the classical system undergoes a
transition from regular to chaotic motions as the
strength of the external field exceeds a critical value
&, = eno = I/50too (where too=tono is assumed to be4 1/3 3

«1 and no is the initial action corresponding to the
principal quantum number of the hydrogen atom). In
this region thc motion can be approximately described
by a diffusion in action space obeying the Fokker-
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FIG. 1. Probability distribution on unperturbed states after r =60 periods of the microwave field for the classical (solid
lozenges) and the quantum (open lozenges) system. Here, no=100, coo=1.5, co=0.08. Notice the fairly good agreement
between classical and quantum numerical results and the analytical solution given by Eq. (3) (squares).

Planck equation:

Bf(n, v) 6 D r)f(n, r)
8v r)n Bn

where

2eon /clio no = 2e n /~

(2)

and v = ~t/2n is the dimensionless time measured in
the number of field periods.

In the quantum case another critical field strength
was shown to exist, the quantum delocalization border:
e~ =coq~i6/(6no)'i2 Below .this value quantum effects
lead to a limitation of classical diffusion within a finite
interval of n values. For field strengths above the
quantum border e~ the diffusive excitation becomes
unbounded and is again approximately described by
the classical diffusion equation (2).

%e performed the reversibility test with parameters
and initial conditions above the delocalization border:
no=100, &0=0.08, coo=1.5. In this way we provide
the maximal chaos possible in a quantum system.
Similarly to the quantum case where the single unper-

turbed state no= 100 was excited, in the classical com-
putations we chose the same parameters and analogous
initial conditions. Namely, we computed 1000 trajec-
tories with the same initial action no= 100 and phases
uniformly distributed within the interval [0, 2n ].

In order to simulate the quantum evolution numeri-
cally we made use of a Sturm basis which allowed us to
take into account transitions to, from, and within the
continuous spectrum. The details and checks of our
numerical technique will be described elsewhere. 9 Thc
numerical computations have been done on a Cray
XMP computer. Our Sturm basis consists of 448 vec-
tors that, notwithstanding their square-integrable na-
ture, include a significant part of the continuous spec-
tral subspace of the unperturbed atom. An important
remark is that no expansion approach can be applied in
order to integrate the Liouville equation because the
relevant basis set would increase exponentially in time.

In Fig. 1 wc show the probability distribution on un-
perturbed states after i = 60 periods of the microwave
field for both classical and quantum systems as well as
the approximate analytical solution of the classical dif-
fusion equation (2):

1f(y, $) =
3i4( )ii2' exp

y (mgj
(I/Wy —2/My+1)' (I/Wy —1)'+ exp—
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where y= n/no, y = n/no, (=2re02/a&P .The solution
(3) holds for g/Wy &( 1 only and corresponds to the
boundary condition (Bf/(ln)„„-=0 at the value n

given by classical numerical simulations.
The sharp drop of the probability distribution at

n = n = 76 is due to the stability of classical motion for
n & n. 6 From Fig. 1 it is seen that, on thc average, the
quantum behavior follows the classical one which, in

turn, is in satisfactory agreement with the solution of
the diffusion equation. In this situation the classical
motion is known to be highly unstable. %ill the same
be true for a similar looking quantum motion? To
answer this question we applied the reversibility test
discussed above. Namely, at time r =60 we reversed
the velocities in both the classical and quantum sys-
tems and followed the evolution for another sixty field
periods. The result is sho~n in Fig. 2. Now, unlike
Fig. 1, we see a striking difference between the classi-
cal and quantum behavior. In the former case there is
no sign of reversibility, as expected, because of the
strong instability of classical motion. Moreover, the
new distribution in Fig. 2 again agrees with the
theoretical curve for r =120 (see also in Fig. 3). In
contrast, the quantum motion proves to be almost
completely reversible and this implies, however
strange it may seem, that the quantum dynamics is
stable even though it is diffusive. An interesting con-
clusion can be drawn from this: Unlike classical chaot-
ic motion, the past history of a quantum system can al-

ways be recovered from its present state.
A different illustration of this reversibility phe-

nomenon is given in»g. 3 ~he~e the excitation proba-
bility is shown as a function of time 7 T. he specular
symmetry of the quantum curve about the time of re-
versal 7 =60 again demonstrates the reversibility and
stability of the diffusive quantum motion. In contrast,
the strong instability of the classical motion leads to a
continuation of the diffusion process after velocity re-
versal (obviously except for a short time interval).

We emphasize that the reversibility phenomenon
docs not depend on the particular initial condition
which we used in this paper simply as an example.

The reversibility of the quantum motion is even
more spectacular if we notice that part of the
recovered initial state comes back from the continuum
(see Fig. 3). The latter process is a peculiar kind of a
coherent recombination.

Thus quantum mechanics provides an interesting
example of a dynamically stable diffusion. Of course,
this process is by no means a truly chaotic (random)
process", nevertheless, it is characterized by strong,
important, statistical properties. In this connection the
interesting question arises whether stronger statistical
properties are necessary at all for statistical mechan-
ics. '0

We notice that a similar situation may happen also
for some classical system, for example, for linear
waves in cavities so shaped as to behave like chaotic
billiards in the geometrical-optics limit.

This interesting phenomenon of stable diffusion
suggests a reconsideration of some fundamental prob-
lems in the nature of classical and quantum mechanics.
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FIG. 2. Probability distribution on unperturbed states at 7 = 120 for the case of Fig. l, after reversal of velocities at 7 = 60.
Notice that the quantum system (Open lozenges) recovers its initial state to seventeen digits which corresponds to numerical
errors. In contrast, the classical motion (solid lozenges) proceeds according to the diffusion equation (2) (squares).
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