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Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity
on Addition of an Electron

R. %.Godby and M. Schluter
3 Td'z T BeII Laboratories, Murray HiII, A'ee Jersey 07974

L. J. Sham
Department ofPhysics, University of California at San Diego, La Joiia, California 92093

{Received 10 February 1986)

We obtain an accurate density-functional exchange-correlation potential, V„,(r), for silicon, from
calculations of the self-energy X(r, r', co). No local-density approximation (LDA) is used for V„,.
The band structure arith this V„, is in remarkably close agreement ~ith that obtained vvith the LDA,
awhile both differ significantly from the quasiparticle spectrum of X. The 50% band-gap error found
in LDA calculations is therefore not caused by the LDA but by the discontinuity, 5, in the exact
V„, on addition of an electron.

PACS numbers: 71.45.6m, 71.25.Rk

Density-functional theory'2 (DFT) has allowed
much progress to be made in calculating structural
properties of solids from first principles. 3 In DFT, the
huge problem of calculating the ground state of the
true system of 10 interacting electrons is transformed
rigorously into that of finding the ground state of a
much simpler system of noninteracting electrons,
moving in an effective potential V(r). A part of the
total energy functional, the exchange correlati-on energy
E„„and the corresponding potential V„,(r), are not
known exactly. Nevertheless, the local density a-pproxi
mation2 ~ (LDA), in which the contribution to E„,
from each volume element is taken to be the same as
it would be in a homogeneous electron gas, has been
found to be remarkably successful. We present here
calculations of V„, for silicon that do not invoke the
LDA, and indeed find it to be virtually indistinguish-
able from VLn".

Electronic excitations are not, in general, described
by DF I, but by the quastparticles of many-body theory,
whose energy E(k) (the "energy-band structure") is
the energy required to add an electron with given
momentum to the system. Because of the absence of
other techniques, it has often been assumed that the
quasiparticle energy-band structure is similar to the
band structure of the fictitious noninteracting elec-
trons that appear in DYl', EnFT(k). This has been jus-
tified by the formal similarity of the Schrodinger-type
equations that the DI I' electrons and the quasiparti-
cles obey, and by the exact result that at zero tem-
perature, the Fermi energy, EF is given correctly by
the highest occupied DFT eigenvalue.

It is found, however, that even the best-calculated
LDA band structures fail to reproduce certain key
features of experimental (quasiparticle) band struc-
tures; worst of all, the band gaps of insulators and

semiconductors are much too small. For example, the
band gaps of rare-gas solids are 40'/o too small, 5 and
those of silicon and germanium 50o/o and 100'/o too
small. 6 Because of the importance of a detailed
knowledge of the quasiparticle energies in the neigh-
borhood of the Fermi energy for the understanding of
defect states, surface states, heterojunctions, and
transport properties, these shortcomings are severe.

Until recently it was thought that this error occurred
either because DI 1' was simply incapable of describing
excited states or because of the use of the LDA rather
than exact DI 1'. However, Sham and Schluter~ and
Perdew and Levy8 have shown that the difference
between the highest occupied and lowest unoccupied
exact DFT eigenvalues in a large N-electron system
(the DFT band gap, Een~) is not the exact quasiparti-
cle band gap Eg, but differs from it by b, , the discon-
tinuity in the exchange-correlation potential when an
electron is added to the insulating system:

EDFT V(N+1) (r) V(N) (r) (I)
(independent of r), where VP) is the exact DFT
exchange-correlation potential for the ¹lectron sys-
tem. b has been shown9 to be a significant fraction of
the energy gap for a one-dimensional model semicon-
ductor within a two-plane-wave basis set, but its size
for a real semiconductor was unknown until now
(although there has been some discussion of the corre-
sponding quantity for atoms). If b, is small, exact DFT
will give accurate band structures, and attention
should be paid to going beyond the LDA in density-
functional theory; if 5 is large, no attempt to add
non-local-density corrections to the LDA will correct
the calculated DI I band structures, and one must ei-
ther go outside DFT, or take the discontinuity in V„,
into account e:xplicitly.
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In order to answer these questions we consider the
true'0 ~„„and thence 5, by using an exact relation-
ship between V„, and the self-energy X, as given by
Sham and Schlciter7:

Im„[GDFT(X —V„,) G j, ,dred =0, (2)

where the subscript r, r denotes matrix multiplication
inside the brackets with the r= r' element then taken.
G is the exact "interacting" one-particle Green's func-
tion and GDFT the exact DFI Green's function. Equa-
tion (2) can be written as a set of linear equations for
the elements of V„,(r), which, together with the fact
that the highest occupied DI.T eigenvalue equals the
highest occupied quasiparticle energy, enable us to cal-
culate V„,(r) without using the LDA. The discon-
tinuity, b, is the difference between the resulting V„,'s

for the N- and (N+ 1)-particle systems.
We now discuss our approximations. We begin by

calculating the dielectric function for silicon, a(r,
r', ru) =1 —VX, where X is the random-phase approxi-
mation (RPA) susceptibility (including local field ef-
fects) and V the Coulomb interaction I/!r —r'!. We
use well-converged LDA wave functions and eigen-
values from a nonlocal pseudopotential calculation to
construct X. This indirect use of the LDA quantities is
justified by the tested insensitivity of our results to the
LDA's band-gap error, and a posteriori by the closeness
of the LDA, accurate DFT, and quasiparticle wave
functions. Here and in the rest of the calculation we
use a 169-plane-wave basis set, 65 energy bands, and
either six or ten k points in the irreducible wedge of
the Brillouin zone. The various frequency integrals
are performed on the imaginary axis. Further details
of our methods will be included in a later paper. "

The screened Coulomb interaction W(co) = e '(~)
&& V is formed straightforwardly, and used in
Hedin's'2'3 "GIV" expression for the self-energy,
which neglects only the vertex corrections in the ex-
pansion of G, and which they find to be very accurate
for the homogeneous electron gas:

X G(r, I, QJ+QJ )dQl .

We replace G (and, later, GDFT) by GDLiDDA, justified as
above. Hybertsen and Louie'4 have recently shown a
similar approximation to be adequate by comparing
calculated quasiparticle energies ~ith the experimental
band gaps. We also calculate the bare (Hartree-Fock)
and staticaliy screened exchange self-energies (without
the Coulomb hole) in which W'(co') is replaced by V
and IV(0i'=0), respectively. The true V„, is then cal-
culated by use of (2).

In Fig. 1 we compare our calculated V„,(r) with
VLn" (r), where we have chosen a LDA derived from

FIG. 1. Contour plots in the (110) plane containing the
zigzag bond chain of (a) the true DFT exhange-correlation
potential &„, and (b) the RPA LDA potential (Ref. 14)
V„",0", in electronvolts. The close similarity illustrates the
high quality of the LDA for the creation of the ground-state
electron density n(r). In each case 169 plane waves were
included in the summation.

RPA calculations of a homogeneous electron gas,
which is also almost exactly equal to the more accurate
Ceperley-Alder LDA potential minus a constant 0.49
eV. The agreement between these quite differently
constructed potentials is surprising.

Having obtained the true V„„we come to our main
objective: to compare the true DFT band structure
with that of the LDA and with the quasiparticle ener-
gies. We calculate these quantities by performing
second-order perturbation theory in X(E) —VLD" and
V„,—VLD", and find all the second-order terms to be
already less than 0.02 eV, illustrating the similarity of
the LDA, quasiparticle, and exact DFI' wave func-
tions, and justifying our retention of the LDA Hartree
potential.

We give the resulting energies in Table I. Remark-
ably, the true DFT eigenvalues are extremely close to
the LDA (RPA) eigenvalues, even though the true
V„, was calculated from X, whose quasiparticle ener-
gies agree with the experimental band gaps. The rms
deviation of the true DFI' valence-band eigenvalues
(relative to I 25, ) from the LDA values is only 0.02
eV. The desired discontinuity in V„„A, which is
equal to the difference between the quasiparticle and
DFT minimum band gaps, is 0.58 eV. Thus b, is
responsible for over 800/0 of the LDA gap error, 0.72 eV,
in contrast to the results of recent model calcula-
tions. '9 Approximations to V„, that go beyond the
LDA are therefore of rather limited value in the calcu-
lation of ground-state properties of silicon; neither will

they yield the correct quasiparticle energies.
Interestingly, silicon's quasiparticle and DFT band

structures differ mainly in a rigid upward shift in the
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Ground-state DFT eigenvalues E( V„,), LDA eigenvalues E( VLD" ), and quasiparticle energies (bare exchange,
statically screened exchange without Coulomb hole, and "GW'") E(X) in electmnvolts. The DFT eigenvalues (and especially
the band gaps) are close to those of the LDA, and differ from the quasiparticle energies by an approximately rigid shift of the
conduction bands. The quasiparticle energies E(XGa ) agree weil with experiment.

Experiment E( VLDA )a Bare
E(X)
Static E( V„,)b E(XGa ) —E( V„,)

'25,
L

3 v

c-band min.
1 15c

I
2 c

L

Min. gap

0 00'
—1.2 + 0.2', —1.S'

1.17d

3 40

2 1r 2 4e

4.3 + 0.2d, 4.0d'

—0.07
—1.29

0.4S
2.50
3.49

1.46
3.30

4.50
7.39
8.54

6.05
8.35

5.05

7.88

6.34

8.04
10.91
11.95

9,61
11.24

0.16

0.00
—1.19

1.24
3.30
4.27

2.30
4.11

0.00

0.66
2.68
3.66

1.62
3.49

0.66

0.00
0.02

0.58
0.62
0.61

0.68
0.62

0.58N'

'Hedin LDA (RPA) (Ref. 12); each eigenvalue is merely increased by 0.49 eV if the more sophisticated Ceperley-Alder LDA (Ref. 4) is
used.

V„, is the calculated true exchange-correlation potential for the A'-particle system, V„,
'Aligned with the quasiparticle valence-band maximum.
dReference 16.
'Reference 17.
fReference 18.
&Equal to 5, the discontinuity in V„,.

conduction bands, which is therefore also equal to b, .
This justifies the "scissor operator" approach20 to es-
timating silicon quasiparticle energies from DFT band
structures. However, comparison of LDA band struc-
tures and experimental quasiparticle energies in other
semiconductors shows that if the LDA remains as
good an approximation to V„, as we have shown it to
be here, a rigid shift cannot occur universally.

As is well known, the bare exchange (Hartree-Fock)
self-energy causes the bands and band gaps to be far
too wide (Eg = 5.1 eV). Screening this exchange with
a static dielectric function (adjacent column) decreases
Eg to only 0.2 eV and raises all energies. The in-
clusion of dynamic screening and the Coulomb hole
( G& column) opens the gap to the experimental value
and lowers the overall energies by about 7 eV.

The exact quasiparticle spectrum coincides with the
exact DFT spectrum at the top of the valence band. 2

Table I shows that this condition is satisfied (to within
0.02 +0.10 eV) if we compare our X, calculated in the
GW RpA-like approximation, with a VLn" derived
from RPA calculations for a homogeneous electron
gas. In contrast, the LDA of Ceperley and Alder, 4

which goes beyond RPA, increases aII the eigenvalues
by 0.49 eV, leading to an apparent violation of the
condition. The accuracy of the quasiparticle band gaps
calculated here and the requirement that the tops of
the valence bands be aligned therefore suggest that
corrections to the RPA-like self-energy will merely

lead to a constant increase in the quasiparticle energies
and V„, of about 0.5 eV.

To gain insight into the physics that causes the spec-
trum of X to be very nearly that of V„, and VLDA, but
with a constant shift of the unoccupied bands, we con-
sider the effects of the energy dependence and the
nonlocality of X. We find that X's energy dependence
is crucial for obtaining the correct dispersion wthin'
each band, but its contribution to the gap is actually
negative, decreasing it by 0.3 eV. The importance of
nonlocality is demonstrated by Fig. 2, which shows
X(r, r') with r fixed. The shape and range (approxi-
mately 0.5 bond length) of this function, though clear-
ly not the amplitude, are fairly independent of the
choice of r. More distant extrema in X, reflecting the
polarization of bonds, are very weak ( ~ 10 2 times
the weight of the main "hole" around r=r'). The
fact that the range of X and the length scale of the spa-
tial variation of the wave functions are comparable,
especially in the conduction bands ~here oscillations
imposed by orthogonality are more prevalent (see Fig.
2), demonstrates that the nonlocality is crucial in ob-
taining the correct matrix elements of X, quasiparticle
energies and band gap. Therefore X cannot be
represented by a single local potential; effectively, the
more rapidly oscillating conduction-band wave func-
tions see a weaker (less negative) potential, so that the
band gap is widened.

In summary, we have shown that nearly all the error
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FIG. 2. 2, : the self-energy X(r, r', can=mid-gap) for r at a

bond center and r' along [111]. Q„: a valence band wave
function Reiit~g~~(r') in the highest valence band, near I .

Q, : a conduction-band wave function in the lowest conduc-
tion band, near I . Atomic positions are indicated by closed
circles. The oscillations of the conduction-band wave func-
tions over the range of X lead to less negative matrix ele-
ments and therefore a larger band gap than if X were local.
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in the silicon band gap that occurs in LDA calculations
also occurs with an accurate exchange-correlation po-
tential, and is therefore inherent in the ground-state
DFT band structure. The LDA is, however, an excel-
lent approximation for obtaining ground-state proper-
ties of silicon. The correct gap may be obtained from
DFT if the discontinuity in V„, is taken into account.
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