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One-Dimensional Fractional Quantized Hall Effect
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The fractional quantized Hall effect in channel geometries with a narrow width is discussed. An-
alytic arguments as well as finite-cluster calculations are presented that suggest that a gap exists in
the excitation spectrum for even- as well as for odd-denominator filling factors. Possible ways that
one might sort this from localization effects in experimental measurements are discussed.
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There has been much interest in the fractional quan-
tized Hall effect (FQHE) recently. Most of the experi-
ments are carried out on interfaces between semicon-
ductors. ' Lately, it has become possible to construct
channel structures as narrow as 100 A on metal-
oxide-semiconductor field-effect transitors. 2 It is thus
natural to ask if it is possible to observe the FQHE in
these structures. Investigation of these effects will not
only provide for some new interesting phenomena but
also further our understanding of the FQHE in gen-
eral. From analytic arguments as well as small-cluster
calculations, I find that, if the channel width is narrow
enough, a gap exists in the excitation spectrum for
even- as well as for odd-denominator filling factors. In
contrast, in the 2D case, a gap exists in the excitation
spectrum only for odd-denominator filling factors.

There are different ways by which this result can be
understood. Perhaps the clearest of these starts off
from a "one dimensional" description of the FQHE. 3

In both the Landau and the circular gauge, the
single-particle basis function is specified by a one-
dimensional label, the y momentum jon the one hand
and the angular momentum m on the other. The total
angular momentum M is a constant of motion in one
case while the total y momentum Jis also a constant of
motion in the other. In general, the discussion in one
gauge can be translated easily into the other gauge. In
this paper, we shall use the language of the Landau
gauge. The basis set can be written as product wave
functions of Landau orbitals given by~

&I(r) =exp[ixIy ——,
' (x —xI)']/(n'I'Ly)'I',

xI ——(2m/Ly )j. (2)

L» is the width in the y direction. If we take the y axis
to be oriented across the channel, then the separation
between the basis functions, Ax&, increases as the
channel width L„ is decreased. The Hamiltonian in
second quantized form can be written, except for trivi-
al constants, as

H= XlIlA (Ii,12,13,14)CI, Cy, CI, CJ, . ()
The A's are integrals of the Coulomb potential and the

Landau orbitals tt J'

A(j„jt,',jt„j,') = d r d r'@ 'J(r)p'(r')

x @I,(r)@I,(r')/~r —r'~. (4)

There is a similarity between Eq. (3) and the Hubbard
model. To bring out this similarity and to gain more
insight, we decompose the Hamiltonian as a sum of a
diagonal, Hq, and an off-diagonal, H, , term:

H=Hg+H0,

Hg —XV(k) nInI+k,
k,j

H, = X X tt(k)XCt~ ICiC;~kCt+k+t+C. C.
I 1k 1 I

The t's are the hopping integrals. To illustrate the
behavior of these parameters, I show V(k) and ti(k)
as a function of the distance k for the twelve-site case
for different values of the aspect ratio I„/Ly = y in
Figs. 1 and 2.

The 2D case corresponds to y close to l. I first re-
capitulate the nature of the commensuration energy in
the 2D case. When y=1, V(k) attains a maximum
and then decreases as one approaches the origin. This
comes from the exchange. More precisely,

V(k) =2[A (jz3=0,ji3= k)
—A(j23=k ji3=0)1,

where j,&
=j, —jt„ the first term (second) is the direct

(exchange) contribution. At small distances k, these
two terms are comparable in magnitude, and the net
value of V is reduced. As k increases, the exchange
contribution dies off exponentially fast and only the
first term remains. The distance i, at which V turns
from repulsive to attractive is independent of the sam-
ple size N', . The diagonal term Hz exhibits two local
minima. Because of the attractive part of V, the parti-
cles have a tendency to form clusters of size 10 less
than I, with total y momentum J,. For example, in the
case of —,'-filled Landau level, the particles tend to
form clusters of two in the twelve-site case and clus-
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FIG. 1. The effective repulsion between the electrons at
different distances for aspect ratios r = 12 (squares), r = 4
(triangles), r =2 (diamonds), and r =1 (crosses) for a
twelve-site system.

FIG. 2. The effective hopping matrix elements of the
electrons at different distances for aspect ratios I =12
(squares), r=4 (triangles), r=2 (diamonds), and r= 1

(crosses) for a twelve-site system.

ters of four in the 48-site case. On the other hand, a
uniform distribution with total y momentum J„ is
favored by the direct energy acting together with the
hopping term. Because of the hopping term, the ener-
gy will be lowered if the wave function forms a linear
combination from these two minima. However, a
linear combination can be formed just for odd denomi-
nators because only then are the y momenta of the two
minima the same. For even denominators, because of
the competition from the two local minima, we obtain
degenerate ground states with the momenta close to
those for the cluster and uniform distributions.

The 1D limit is approached when y becomes large.
As y is increased the separation between the basis
functions is increased, and the overlap of the wave
functions is decreased. As a consequence, the hopping
matrix element r, as well as the exchange contribution
to V, is decreased. This is obvious from Fig. 1 where
we see that for a y of 12, Vno longer decreases as the
origin is approached. Furthermore, from Fig. 2, the
hopping matrix element rt has decreased to a magni-
tude of 10 3. Aside from the fact that the hopping
term is a two-particle operator, this is not that dif-
ferent from the ordinary Hubbard model. To further
confirm this, I have diagonalized the Hamiltonian nu-
merically for the twelve-site case. When y= 12 I find
gaps equal to 0.691 and 0.38 in the —,'-filled and the
—,
' -filled cases, respectively; these correspond to V(1)
—V(2) = 0.7 and V(2) —V(3) = 0.32, as we physical-
ly expected. In contrast to the 2D situation where the
gap for —,

' filling is much bigger than that for —,
' filling

p„= XJ exp(ik ti, )exp( —,
' ik'z, ). (10)

where z(l,i) =x( J)I+iy(»). For large k, S(k) ap-
proaches 1 whereas S(k) approaches 0. I find that for
the case with y = 4 there is a giant peak of magnitude
very close to 6 (the maximum possible value for a
six-particle system) at q = m/a, where a is the intersite
spacing, indicating the formation of the "uniform"
distribution with every other site occupied in the half-
filled case. For other values of q its magnitude is less
than 10 3. Hence one has nearly perfect order. The
magnitude of this peak is about 5 times larger than
that from finite-cluster calculations for the —,'-filled
case and 10 times larger than that from the Laughlin
wave function.

In general, the picture of the ground state is thus

(no gap), the situation is reversed here. Recall that
the gap is approximately equal to 0.1 for the —,'-filled
case in the 2D situation. The magnitude of the gap
seems bigger in the present case. When y = 4, the gap
is equal to 0.31 at —,

'
filling, whereas V(1) —V(2)

= 0.27. For y = 2, I find no clear evidence of a gap.
To gain more understanding of the nature of the

ground state, I have also looked at the projected static
structure factor S(k), obtained from the ordinary
structure by demanding that all intermediate states lie
in the lowest Landau level. This is defined to be

S(k) = (p kpk). -
where pk is the projected density operator defined by
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one of an average occupation of every v ' site for a
filling factor 1/v. If r(l/v) is small compared with
V(1/v) —V(1/v —1), a perturbation expansion in the
ratio of these two quantities will provide a reasonable
estimate of the gap. A more interesting question con-
cerns the existence of a gap in the limit that the ratio is
not small. For the ordinary 1D Hubbard model, a gap
exists no matter what the value of (/A Vis. If one can
approximate the two-particle hopping term H, by

X r, (k)(C, +kCI+k+, ) XC, , C;
1=1 k=1 i

+ c.c.,

then the usual arguments for the Hubbard model can
be applied. The validity of this approximation has not
been investigated in detail, however.

To investigate a possible size dependence of the
Hamiltonian parameters, I calculated V(1) —V(2) for
different sizes N, but with the same width L». I found
that for L» = (6m) t~2 it is equal to 0.27, 0.32, and 0.32
for N, =12, 24, and 48, respectively. The hopping
matrix elements rt(l) is of the order of 10 2 for all
these cases. For N, =48, I found that the diagonal
term V(1) —V(2) (0.21) is still substantially bigger
than the hopping matrix element (0.02) up to L»= (8~)»2.

The numerical calculations were carried out for
periodic boundary conditions in the y direction. This
differs from the actual boundary condition. The
spread of the wave function in the lateral direction is
L»=(2nX, /y)'~2 For .N, =12, L»=5 and 2 for y=4
and 12, respectively. When L» is small, boundary ef-
fects will be important and our Hamiltonian may not
be accurate at y = 12. It is possible to employ a slightly
different basis set of the form $„f(k—x&)Q, so that
the wave function dies off in the lateral direction away
from the channel. An example of f would be
I/(k2+Xz) for some parameter A. . If the width L» is
of the order of the Larmor radius, by properly chosing
fone can construct wave functions located at R of the
form / =exp[ —(r —R, )z/4+ I'ixR r/2] which ap-
pears in the circular gauge. We thus expect a slight
smearing of the wave function in the x direction. To
estimate the possible changes to the Hamiltonian, I as-
sumed a periodic arrangement of the wave function P
and found that the direct contribution to V{1)—V(2)
is given approximately (I have ignored the image con-
tributions) by

—,
' n'~2[exp( ——,

' Rt')Io( —,
' R()

—

exp�

( ——,
' R z2 ) Io( —,

' R 2 ) ],
whereas the exchange contribution is given by

—,'7r'~'[exp( —
8 Rt')Io( —,'Rt')

—exp( ——', R22 )Io( —,
'

R22 ) ].

We hence obtain V(1) —V(2) =0.16 for y =12. The
hopping matrix element is given by

t (1)= —,
' ~'~ [exp ( ——,

' R ~2 ) —exp( ——,
'

R22 ) ].
r =0.04 for y= 12. Thus V(1) —V(2) is still positive
and much bigger than r(1) in this case. Because of
the change in boundary condition, the single-particle
energy will also be shifted away from the value 0.5f cu, .
If the channel width is not uniform, this can produce a
random shift in this energy and create additional ran-
domness in the system. If the fluctuation of this shift
is less than the gap I do not expect a drastic change in
the results obtained here.

There are other explanations of the commensuration
condition for the 2D situation. It is not difficult to
understand why they are not applicable in the present
case. Laughlin5 proposed a trail wave function of the
form

(z, -z, ) exp ——,
'

Xr,',
i&j l

with probability density
F

~y, ~' = exp 2m X lnr, ~ —,
'

Xr,';—

(12)

(13)

F(2 m) = L ( m)/2 m + —,
' (1 —ln m), (14)

where L(z) =lnI (1+z). I note that, at a given tem-
perature m, F does not exhibit any minimum as a
function of the density of the particles. Hence there is
no corresponding relationship between the density and
m here. Whereas in the 2D case there is the term gr;2
that holds the particles together and one can determine
m in terms of the density, in the present case no such
term is present; one can basically choose any m.

Tosatti and Parrinelo pointed out that multiparticle
exchange on an uncorrelated signer lattice may lead

r, is the distance of the point (x;,y;) from some origin
of coordinates, and r„ is the distance between the
points (x, ,y, ) and (xj,y&). This density is identical to
the partition function of a one-component plasma with
m corresponding to the effective coupling of the plas-
ma. For this plasma to stay together, m is determined
by the density and is equal to the inverse filling factor.
One might attempt to generalize this formula to the
present case. Imagine the electrons being confined to
a large ring with a fixed radius C. Then one can in
principle easily modify the above formula by multiply-
ing it by g&zf for some constant a so that the mean
magnitude of z is C. The probability density then cor-
responds to the partition function of a 1D plasma. The
thermodynamic properties of this 1D logarithmic plas-
ma have been studied quite intensively in the context
of random matrices. The free energy was first conjec-
tured by Dyson and proved by Wilson. 6 They found
that the free energy F is given by
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to a commensuration energy. For exchanges involving
particles in a loop on a lattice of area Aao2 (ao is the
lattice constant; for the —,'-filled case, ac=4.665) in-

volving N~~ particles, the exchange integral has a phase
factor equal to —,Aao2. —,

'
Aati is modulo %~~ ir/v, where

I/v is the filling factor. Hence when v is odd, these
exchanges enhance the total energy. Chui, Hakim,
and Ma8 found that for correlated Wigner lattices, the
commensuration condition becomes exact only when
the area covered by the particles exchanged becomes
large. Similar conditions seem to have been found in

the path-integral calculation by Kivelson et ai.9 When
the width of the channel is reduced, the possibilities of
the exchanges are limited. One can imagine a ring
geometry and focus on the exchange around the ring.
A phase factor of Aao2/2 will again be obtained.
Aao2/2 is, however, no longer modulo %~~ m/v and the
normal argument is inapplicable. These arguments did
bring out the question of possible new physics of ring
geometries associated with the Bohm-Aharonov effect
which will be discussed separately.

What is the critical width of the channel so that 2D-
type behavior is recovered'? The present numerical
calculation indicates that 1D behavior is observed up
to a width of the order of 5 Larmor radii. However,
we do not know what the maximum width can be.

We next look at the question of impurity pinning.
Because of the presence of the gap, when the impurity
potential is weak, these impurities do not couple the
ground state strongly to the excited states. Analogous
to the 2D case, the ground states possess a center-of-
mass degeneracy and the impurities can mix them in

principle. Let us call two of these states with different
mean values of center of mass ~a) and

~
tIt). In both

the 2D and the 1D case, they are linear combinations
of products of single-particle wave functions. The
separation between the single-particle mean spacing of
these degenerate states is of the order I/I». We ex-
pect the matrix element (a ~ V, (r, ) ~b) to be equal to 0
for any single-particle impurity potential V, because
the overlap of the wave function of the remaining par-
ticles IWjgoes to zero in the thermodynamic limit. If
the impurities are randomly arranged, we expect
(a~&&V(j)~a) = (b~g, V, (j)~b). Hence we expect
the ground state not to be pinned if the impurities are

weak.
How can these effects be observed experimentally?

The most direct observation would be to measure p~
as a function of the filling factor. It may be difficult to
put leads onto structures that are 100 A wide. One
possibility is to do an ac-type measurement so that no
external leads are necessary. Another possibility is to
try to measure p . However, it may be masked by
possible localization effects of the electrons that have
not been discussed so far. One can follow Halperin'o

to argue that the system may not be localized for a
weak enough impurity potential; it is not clear if this
weak-scattering condition can be satisfied experimen-
tally, however. Since localization effects by them-
selves are not a strong function of the filling factor,
one may try to look for changes as the filling factor is

changed. Alternatively, one may manufacture a
"weak link" of a narrow channel of width w and
length i connecting two 2D regions. At even-
denominator filling factors, the 2D regions will not be
affected. If we pick the length i to be smaller than the
localization length, then this weak link may act like a
switch and turn the current off at these situations.

I thank K. B. Ma for helpful discussions.
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