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%e report the growth and structure of fractally rough silicate particles in solution. Using small-
angle x-ray scattering, we find fractal surfaces both in solution and in a porous solid made from the
solution precursor. Finally, we develop a simple model which both is consistent with silicate chem-
istry and generates fractally rough structures.

PACS numbers: 68.70.+m, 61.10.Lx, 82.70.Dd, 82,70,Rr

It is not at all obvious that objects which grow in a
indeterminate fashion can have characteristic statistical
structures. Yet one of the most interesting phenome-
na in random growth is that systems with only short-
range forces and no long-range order can form parti-
cles whose large-scale structure is both distinctive and
statistically well defined. Many of these structures can
be described as mass fractals, ' objects whose mass
(M) scales as their radius (R) to a power (D) less
than the dimension of space (d): M~ RD, 1 & D & d.

In contrast to mass fractals, we report a system
which produces a different class of objects: homo-
geneous colloidal particles with fractally rough sur-
faces. We not only demonstrate the growth of fractally
rough particles, but also show that a solid with fractal
porosity can be made from the rough particles. Final-
ly, a simple model is developed which incorporates
only local chemistry and yet generates fractally rough
clusters in two dimensions.

Although several groups find evidence for fractal
surfaces in solids, 2~ we believe that our study is the
first to demonstrate the growth of surface fractals and
the first to explain the origin of fractal surfaces in
terms of random growth. These fractally rough col-
loids grow in solutions of partially hydrolyzed silicon
tetraethoxide [Si(OC2H5)&, TEOS). Silicate species
grown in such solutions can have a particularly diverse
range of random structures, from weakly cross-linked
polymers5 to dense, smooth colloidal particles. 6 The
class of structures we produce is of interest both be-
cause of the unique growth process and because of the
potential technological importance of the new class of
surface structures.

Surface fractals are objects whose mass scales as the
radius in a Euclidian fashion (D = d), but whose sur-
face area, S (measured with a fixed "yard stick" or tile
size), increases with radius more rapidly2:

S~R ', d —1»D, »d. (1)
Equation (1) is obeyed only over a limited range of
length scales. At large length scales (beyond a "sur-
face correlation range") the object becomes uniform
so that D, d —1 (=2 for d=3). On short length
scales, the objects either may become smooth

(D, 2) or may reflect the short-range chemical con-
figuration. If the object is rough on length scales
comparable to its radius, then it reduces to a mass frac-
tal of dimension D. A mass fractal is therefore a sur-
face fractal which is rough on all length scales and
whose surface area scales with the mass (1
»D, =D» d).

Scattering experiments, both small-angle x ray
(SAXS) and light, are the techniques of choice for
structure determination. Mass fractals give rise to
power-law scattering curves in the intermediate or Po-
rod regime~ 9:

1(K)—K D, 1»D & 3, (2)
where K = 4~(sin&)/X, 28 is the scattering angle, and
A. is the wavelength of the radiation. If an object is
uniform (i.e. , D=3), the scattering also generates a
power-law profile3 which depends on the structure of
the surface:

1(K) —K ' ' d —1&D, (d. (3)

For uniform objects with smooth, nonfractal surfaces,
D, =2 and Eq. (3) gives the familiar Porod's law
(1—K 4). Equation (3) is therefore a generalization
of Porod's law for fractal surfaces. Scattering mea-
surements can distinguish between mass fractals
(scattering exponents of —1 to —3) and surface frac-
tals (exponents of —3 to —4).

Two x-ray instruments were used in the study. The
solution work was done with a Kratky system whereas
the porous solid was studied with a pinhole camera.
Because of the smearing effect of line geometry, the
data from the Kratky system must be desmeared be-
fore comparison to Eqs. (2) and (3). For power-law
profiles, however, the observed smeared intensity pro-
file is just Kl(K) so the curves are analytically
desmeared by dividing the observed intensity by K.
This procedure is inadequate outside power-law re-
gions. As a control, eve also measured dense colloidal
silica (Ludox SM) and found Porod-law behavior,
1(K)—K, in the analytically desmeared data.

The silica solutions were prepared by hydrolysis of
TEOS at room temperature in alkaline (0.01M
NH4OH) ethanol solutions with H20:TEOS ratios, If,
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FIG. 1. Scattering profiles from silicate polymers grown in
alkaline solution as a function of the molar ratio,
= H20/Si. Note that all data points shown are used in deter-
mination of the properly weighted linear feast-square fit,
Data were analytically desmeared to give the pinhole
equivalent curves, Initial concentration of NH~OH is 0.01M
Data are taken eight days after the initiation of the reaction.

of I to 4. After 190 h, the x-ray scattering from these
solutions was measured (Fig. I). The scattering from
the solution with ~=1 yields an exponent of —2.8
which we interpret as a mass fractal. For the solutions
with W = 2, 3, and 4, the scattering curves exhibit a
decade of power-law behavior with scattering ex-
ponents which change continuously from —3.3 to
—3.6 as the water ratio increases from 2 to 4. We in-
terpret the exponents as arising from surface fractals.
Since there is no discontinuity in the chemistry of the
system, this scattering behavior suggests that the sys-
tem is crossing over from mass- to surface-fractal
behavior. The data could also be interpreted as
scattering from power-law polydisperse distribution of
particles, as discussed below.

t

We also studied the structure of a porous solid
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FIG. 2. Comparison of the &=2 solution scattering

curve with that of a porous solid made by air drying of the
solution.

prepared by air drying of the W'=2 sample in Fig. 1.
Figure 2 compares the scattering profiles of the
translucent solid to its solution precursor. At large K,
the curves are nearly identical, indicating that the
surface-fractal character of the precursor is retained in
the solid. The curvature near %=0.02 A ' suggests
that the structure is uniform over distances larger than—50 A. This length is related to the mean pore ra-
dius, but the detailed shape in the crossover region is
unknown.

On the basis of siiicate chemistry, we develop a sim-
ple growth model which generates fractally rough par-
ticles. Having established a reasonable growth model,
we then discuss its consequences, including the classes
of structure which can be grown, and the effect of po-
lydispersity.

In our system, silica condensation polymerization
proceeds by a two-step process. In the first step, func-
tional sites (—SiOH groups) are generated by the hy-
drolysis of noncondensible alkoxide groups'o:

Sj(OC2Hs)4 t„ t)(OH)„ t+H20 Si(OC2Hs)4 „(OH)„+C2H5OH;

The silicate species on the right-hand side of Eq. (4) is an "n functional" monomer which can form n Si—0—Si
linkages by condensation (see below).

In basic solution, reaction (4) proceeds by a nucleophilic substitution mechanism ' which (1) inverts the sili-
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cate molecule, and (2) becomes more facile as n in-

creases. Because of the inversion, hydrolysis becomes
more difficult once a monomer is incorporated into a
cluster. Unhydrolyzed sites on polymers are thereby
"poisoned" and do not polymerize readily. Because of
item (2) above, a nonuniform distribution of mono-
mers develops and the system can become depleted in

monomers of intermediate ( n —3 ) functionality.
These two factors, coupled with a third described
below, form the rules for our growth model.

Silicate polymers result from condensation6 of the
hydrolyzed species produced by Eq. (4):

RkSi(OH) + RISi(OH)

—R„Si—0—SiR, + H, O. (5)

This reaction also proceeds by nucleophilic substitu-
tion above pH = 2 and strongly favors reactions
between highly condensed species [Rk = (—OSi) ) and
monomers [RI= (—OH) or (—OC2H5)]. In other
words, growth proceeds by monomers attaching to
clusters with reactions between clusters being imped-
ed. This prejudice arises both because monomers
most easily invert and because the preferred reaction is
between the more acidic functional groups on the
monomers and the more basic groups on the poly-
mers. "

From the above considerations, we can extract three
basic rules of growth. (1) Polymers grow only from

monomers with all growth sites equally probable
(reaction-limited nucleation and growth); (2) unhy-
drolyzed groups are permanently poisoned and bonds
are never broken; (3) growth occurs from a fixed dis-
tribution of monomers of different functionalities. We
believe that the mean functionality ((n)) of the
monomers and its variance are the most important
variables. These parameters depend on the water con-
centration with the variance expected to be large be-
cause of the depletion of monomers of intermediate
functionality. These growth rules are a variation of the
Eden model. ""

In the Eden model, growth occurs on a lattice by ad-
dition of monomers to randomly chosen surface sites
starting from a nucleus (seed). In our model, howev-
er, a fraction of the bonds is permanently poisoned ac-
cording to rule (3) and subsequent growth occurs only
on the unpoisoned or growth sites. Figure 3 shows a
two-dimensional simulation grown from a I:1 mixture
of two- and four-functional monomers. The exterior
surface of the resulting cluster is a fractal with a sur-
face fractal dimension equal to 1.5+0.1. The rough
structure is due to large spatial fluctuations in the den-
sity of growth sites resulting from the large variance in
functionality. For certain monomer ratios growth
eventually ceases because a statistical fluctuation in
the number of low-functional monomers completely
poisons the cluster.

Our observations imply the scattering behavior as a
function of water concentration shown schematically in
Fig. 4. At low water concentration ( %small) corre-
sponding to a low mean functionality and a large vari-
ance, the particles are mass fractals (at least at finite
size), so that D, D„and the scattering exponent, P,
are all equal. As the amount of water in the system in-
creases (increasing (n) and decreasing its variance) „D
and D, increase until they equal the dimension of
space. At this point, the particle is insufficiently rami-
fied to be considered mass-fractal, but has a maximally
fractal surface. As 8'increases further, so many sites
are available for polymerization that the core of the

FIG. 3. Typical cluster generated by poisoned Eden
growth ~ith an equal mixture of t~o- and four-functional
monomers. The cluster contains 6400 sites. The plus signs
represent growth sites. The surface fractal dimension, D„
obtained from the radius dependence of the perimeter is
1.5+0.1, ~hereas the mass fractal dimension, D, obtained
from the mass dependence of the radius, is 2.0 + 0.1.

FIG. 4. Schematic trends expected for the mass (D) and
surface (D, ) fractal dimensions as a function of 8'. The
scattering exponent (P) is also included. Only the trends
and crossover points are significant since ~e have no infor-
mation on the actual shape of the curves.
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particle becomes homogeneous (D = 0), but, if the
variance is large, the surface remains fractal with D,
decreasing from its maximum value of d Finally,
~hen the monomer s are very highly hydrolyzed
((n) 4 and its variance necessarily goes to zero),
D, reaches its minimum value of d —1, D remains
equal to d, and the scattering exponent reaches d+ 1.

The full consequences of the above model are quite
complex and have not been explored. We believe,
nevertheless, that poisoned growth is the key idea
needed to explain the observed structures. The model
can generate uniform particles with fractally rough sur-
faces and the model displays the observed trends
with W.

On the basis of the scattering data alone, we cannot
exclude the possibility that the power-law scattering
curves are due to polydispersity. If we have, for exam-
ple, a distribution of uniform particles whose mass dis-
tribution, iV, is a power law, lV'(M) —I ', then the
exponent ' in the Porod regime is —3(3—~) for

Depending on r, the scattering exponent lies
between 0 and —4, consistent with the data. Within
this interpretation the data in Fig. 1 imply that 7 varies
from 2.1 to 1.8 as Wgoes from 1 to 4.

It should be noted that the poisoned Eden model
discussed above generates power-law size distributions
under some conditions. In all cases where we ob-
served such distributions, however, « —,

' and so even
within the model, polydispersity does not modify the
interpretation presented here. Although our prejudice
is to interpret the data in terms of a quasimonodisperse
solution of rough particles, the distinction between
such a system and a polydisperse collection of uniform
particles is often academic. Surface-dependent proper-
ties (adsorption, catalysis, etc.), for example, should
be identical for the two possibilities.

Pinhole SAXS data were taken under the super-
vision of J. S. Lin and S. Spooner at the National
Center for Small Angle Scattering Research at Oak
Ridge National Laboratory. This work was performed
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