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2'gRa a Reduced Width and Its Consequences for rx Clustering in the Heavy Elements
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Nuclei of 2"Ra were produced in the reaction '08Pb('3C, 3n). After being separated from the
beam by a velocity filter, they were implanted in a Si(Au) surface-barrier detector and their u-
particle decays were observed in the same detector. From these ~-decay events the half-life of
2'~Ra was measured to be 25.6 J1.1 p, s, almost a factor of 2 greater than the previously reported
value of 14 + 2 p, s. The resultant o. width fits well into the overall picture of o.-decay-rate systemat-
ics and weakens one piece of evidence quoted for the existence of o. clusters in heavy elements.

PACS numbers: 23.60.+e, 21.60.6x, 27.80.+w

In molecular spectroscopy, reflection asymmetry for
rotational bands is characterized by states with spin I
and alternating parity connected by enhanced El tran-
sitions. The molecular nuclear model proposed by
Bohr implied that nuclear matter also may acquire an
asymmetric shape. It, too, would then manifest reflec-
tion asymmetry and a rotational band with an 1" se-
quence in doubly even nuclei of 0+, 1,2+, 3, 4+,
etc. Because vibrational collective states should also
be present, mixing could result in low-lying states with
a spin sequence of 0+, 2+, 1, 4+, 3, etc.
Negative-parity levels at low excitations were
discovered' in even-even nuclei around the radium re-
gion thirty years ago. However, after many theoretical
endeavors these levels were described2 as coherent but
nonadiabatic vibrations built on few-quasiparticle exci-
tations in the reflection-symmetric representation.

Recent theoretical and experimental evidence for
nuclei in the radium region has revived the concept of
intrinsic reflection asymmetry. For example, inter-

play between rotation and octupole shape deformation
might account better for the high-spin 2'sRa data (see
Fernandez-Niello et al." and Gai et al.5) than the align-
ment of an octupole phonon. As an alternative to the
microscopic derivation of reflection asymmetry from
Strutinsky theory, 6 it has been proposed that the asym-
metry arises from a-cluster states that are associated
with a molecular dipole degree of freedom. 7 9 Among
the evidence cited~ for this second explanation has
been the existence of large a-decay widths for nuclei
with neutron numbers just above N = 126. As a
result, suggestions have been made that o.-clustering
effects play an important role in heavy nuclei as they
do in the '60 and 2 Ne mass region (see, e.g. , Gai er
ai. '0). An especially strong case has been made for
2taRa whose width is the largest one reported for iso-
topes in this mass region, exhausting some 75% of the
signer —sum-rule limit.

Figure 1 shows a plot against neutron number of re-
duced widths for s-wave (or ground-state to ground-
state) ~ transitions connecting even-even nuclei with
78 ~ Z ~ 100. Here the formalism developed by
Rasmussen" has been used. In it a relative decay
probability is represented by the reduced width 52, de-
fined by A. = 52P/h, where A. is the decay constant, /t is
Planck's constant, and P is the penetrability factor for
the a particle to tunnel through a barrier. One sees
the regularity of the widths as a function of N with the
extremely sharp break at N =126. This discontinuity
has been shown (see, e.g. , Mang'2) to be a shell-
structure effect. (A less pronounced minimum can be
seen at the N =152 subshell. ) The indication in Fig. 1

is that only the ' Ra width (open point at N =130
identified as 2tsRa) is out of line when relative a-decay
widths are examined. It is about a factor of 2 greater
than the 82 value expected from systematics.

To calculate the reduced width for an n transition
the decay energy and half-life are needed. Two u-
decay energies, in agreement with one another, are
available for 2tsRa, i.e., 8392+8 keV (Torgerson'3)
and 8385+8 keV (Valli'"), but only one value has
been measured' for the half-life, i.e., 14+2 p, s. We
decided to remeasure the half-life of 2tsRa to see if its
a width is indeed anomalously large.

The nuclide was produced in the reaction
2naPb(t3C, 3n) by bombardment of a 200-p, g/cm2-
thick 20sPb target with 67-MeV '3C ions from the Holi-
field Heavy Ion Research Facility tandem accelerator.
Forward-recoiling compound-nuclear products were
separated from the '3C beam by use of the
accelerator's velocity filter, ' and were implanted in a
Si(Au) surface-barrier detector. The deposited recoils
provided a start signal for a time-to-amplitude convert-
er (TAC) while the n-particle decays furnished the
stop signal. Details of this novel experimental tech-
nique are being prepared for publication. ' Energy
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FIG. 1. Reduced widths for s-wave o. transitions plotted as a function of neutron number for nuclei with atomic numbers
from 78 to 100. The open point at N = 130, labeled as 2'8Ra, is the width calculated by use of the previously available (Ref.
14) half-life, 14 + 2 p, s, for this isotope. The width for the same nucleus calculated by use of our measured half-life, 25.6 + 1.1
p.s, essentially coincides saith that of '6Rn. Values enclosed in parentheses for Z = 78 and Z =80 are based on estimated o.

branches.

scales for the recoil and ~-particle spectra (measured
with two different amplifiers) were calibrated with a
244Cm n source and a precision pulser. Calibration of
the TAC was accomplished by use of a commercial
time calibrator. Energy and time information was
stored in an event-by-event mode on magnetic tapes;
histograms were generated on-line as the experiment
progressed. The incident energy was selected to max-
imize the (' C, 3n) cross section. In addition, the 2-

p, s flight time through the velocity filter and the 80-p, s
range of the TAC provided further diminution of un-
desired n-emitting isotopes.

Figure 2 shows the spectra of heavy recoils [Fig.
2(a)] and n particles [Fig. 2(b)] recorded during a 12-
h run with a beam intensity of —10 particle nA. The
three n groups in Fig. 2(b) are 2'SRa, its a-decay
daughter 2'4Rn, and a peak which encompasses events
wherein both a energies are summed because of the
short (0.27 p, s) half-life'3'4 of 2'4Rn. As a result of
the flight time in the velocity filte most of the short-
lived 2'~Rn nuclei have to result from 2'SRa decay
rather than from independent production, and, since
the a branch of ' Rn is 1000/o, this is indeed reflected
in the essentially equal intensities of the two ~ groups
in Fig. 2(b). In contrast to data from ordinary n-
particle sources the 2'8Ra and 2'4Rn peaks show little
degradation because the radioactive nuclei have been
implanted in the Si(Au) detector. However, tailing
does occur on their high-energy sides and on the low-

energy side of the sum peak. These tails are a neces-
sary consequence of the fact that the ~ emitters are lo-
cated near the front face of the detector and are caused
by a particles ejected from the detector, leaving only a
fraction of their total energy (these points will be dis-
cussed in more detail in the forthcoming manu-
script'6).

Within uncertainties all three peaks had the same
half-life, which was almost a factor of 2 larger than the
14-p, s value reported'4 for 2'SRa. Figure 2(c)
represents the time distribution for all ~ decays
recorded in Fig. 2(b) spread over the 80-p, s TAC
range. The decay curve generated by setting gates only
on the three peaks is shown in Fig. 2(d); the resultant
half-life is 25.6+1.1 p, s. [The shorter-lived com-
ponent seen in Fig. 2(c) is due mainly to 2'7Ra pro-
duced in the ('3C, 4n) reaction. ] From the 25.6-p, s
half-life we deduce a 52 value of 0.23 MeV. This
width is indistinguishable from the 2' Rn point in Fig.
1 and is well below the 0.42-MeV value (open point)
based on the 14-p.s half-life. Our measurement re-
moves the ' Ra discrepancy vis iz vis n-decay rat-es-in
the heavy-element region. Nevertheless, the impor-
tance of n clusters in accounting for low-lying levels in
nuclei with % around 130 needs to be explored be-
cause their reduced widths are larger than those of iso-
topes with W~ 126.

In a discussion of clustering effects, one should
remember the recent discovery of '4C emission from
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FIG. 2. E~e~gy spectra measured (a) for product nuclei stopped in a Si(Au) surface-barrier detector and (b) for subsequent
a-p«ticle decays registered in the same detector. (c) Time distribution of all recorded a decays; (d) decay curve deduced from
the time distribution gated by just the three a peaks in (b), i.e. , 2isRa, 2'4Rn, and their sum peak.

Ra (Rose and Jones, ' and Gales's) and from 222Ra

and 2z"Ra (Price et al. '9). These data suggest the pres-
ence of '4C (or other heavy) clusters at the nuclear
surface. Current deformed-shell-model calculations

support this speculation. Chasman20 has pointed out
that a '4C bulge induces a shape similar to the
octupole-deformed Strutinsky equilibrium shape.
Leander er al.2' have found that an a cluster and a
reflection-symmetry core do not account for the
decoupling factors —or the K= —,

' ground state —of
Ra„ the Strutinsky equilibrium shape or a large clus-

ter, such as '4C, is required. The generally smooth
trend of 52 values for N ~ 130 seems to eliminate ar-

guments that a-cluster configurations rather than the
cranked Strutinsky equilibrium shapes are more ap-

propriate for describing the lighter radium isotopes. In
fact, while the calculated Strutinsky equilibrium shape
is spherical for the 'sRa ground state, in the
cranked-shell-model calculations of Nazarewicz et al.22

it acquires an oetupole deformation at finite spina so
that the yrast spectroscopy in this nucleus can also be
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accounted for.
To conclude we now consider s-wave reduced widths

of rare-earth a emitters. Following their sharp drop at
N =126 the 52 values shown in Fig. 1 increase as N
decreases in the direction of the 82-neutron shell; as in
the case of the heavy elements, widths in the rare
earths reach a maximum (see, e.g. , Nazarewicz and
co-workers23) for nuclei with about four neutrons
above the shell closure. On the basis of a measured2~
a-branching ratio of (21 +6)% for '56Yb this N = 86
nucleus appeared23 to have an extremely large width, a
point that was interpreted25 as a possible indicator for
a clustering. However, a search 5 for new low-lying
negative-parity levels in '56Yb and '5sYb revealed
none. While not specifically looking for such states,
an earlier study26 of '56Yb and a recent investigation27
of ' Yb also did not report low-spin negative-parity
levels. The ' Yb o. branch has been remeasured28 to
be (9+2)% (a ratio confirmed in Ref. 25); this new
branch lowers the reduced width to 0.19 MeV, a
number consistent with 52 values of other N = 86 iso-
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topes. The width, however, is large enough to be
comparable to those in the radium region that we have
already discussed. It seems that large a widths are not
related to the existence or nonexistence of enhanced
dipole transitions in nuclei.
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