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Some Quantum Corrections to Calabi-Yau Compactification
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The counterterms constructed by Green and Schwarz in the field-theory limit of superstrings are
put into a form of Calabi-Yau compactification. Dimension-six operators are explicitly extracted.
The modifications of the gauge kinetic terms and of the Kahler potential are obtained. Axion cou-
plings and some CP-nonconserving interactions are given.

PACS numbers: 12.10.6q, 11,17.+y

There has been much interest in the unified theories to be finite to all orders. The anomaly-free properties
of superstrings' since Green and Schwarz sparked the are closely tied to this fact2 and may be viewed as a
field by the discovery of anomaly-free string theories. consequence of finiteness. Upon truncation to the
The subsequent developments of heterotic construe- massless sector (field-theory limit), finiteness is lost,
tion of superstrings and the compactification on cer- but the anomaly-free property is maintained with the
tain Ricci-fiat Kahler manifolds4 5 seem to have addition of those counterterms. The point of view2
demonstrated that one can argue a realistic unification pursued here is that they represent some of the contri-
and its phenomenological properties, based on E8X E8 butions coming from massive modes, thereby imple-
superstring theory, within certain Ansi''rze and approxi- menting constraints coming from anomaly-free theory.
mations. Certainly, one of the central issues is to ex- The aim of this Letter is to investigate the signifi-
tract dynamics involving massless particles in some cance of the counterterms in the context of Cajabi-Yau
convincing manner. compactification. Below, we explicitly perform the

Much of the recent phenomenological developments decomposition of ten-dimensional fields, with i[s basis
along these lines are, in practice, based on the field- on Calabi-Yau space. We mostly use the language of
theory (or zero slope) limit of superstrings and a few differential forms.
results, 5 6 on complete tree string amplitudes: One The starting point is a truncation of the E8 vector
may naturally wonder what we obtain from quantum potential one-form in M4X (Calabi-Yau) space follow-
corrections of superstrings. At the present, a workable ing the recipe of Witten:
approach to Calabi- Yau compactification in full- A (xy)
fledged string theory does not appear to exist. There

6(y)+A4( ) +1 A6(,y), ( )is, however, a relatively simple way to give some of
the characteristic terms among these corrections, corn- wh&«A4= A4' is the E6 gauge field in M4,

(3 27) (3 27 )ing back to the original work by Green and Schwarz2: A6=Ai ~+~ 2 ~ is a massless scalar field in M4
The "counterterms" Si, S2, and S3 necessary to have arising from the zero modes in Calabi-Yau space8 and
an anomaly-free d= 10, iV=1 supergravity do come is expanded in terms of the available harmonic forms'
from string quantum corrections. (see below). n6=—o.i8'i is a c-number background

Superstring theories are one-loop finite and believed configuration; it must be a holomorphic, stable one-
form. The corresponding field-strength two-form is

F=1 8 F6+F4 8 1+1 8 {D6,A6}+ {D~,A6}+18 A6, (2)

where D4= d4+A4, D6 —d6+—a6, and F—6=—d6a6+a6. The last quantity must satisfy (F6) „=0and g "(F6) „-=0
because of the properties of a6.4

The gauge field for the second E8 (Es ) undergoes a trivial truncation A'=—A4 8 1 according to the above re-
cipe. The antisymmetric tensor field decomposes like

B=84 8 1+1 8 86. (3)
The background spin connection ~6, obtained from truncation co= ~6~+(4and R =R6+Rq), is related to
the background gauge fleld through triF6 =30triR6. The truncated expressions we obtain for Si', S2, and S3 are
respectively

f

Si = —», '000 c 30)/B4 ( [4 «i F4A 6 + 2 tri {D4 A6 } ] G + 4 [tri {D4 A 6 } {D6 A 6 j + —,
'

d~ tr, A 63 ]2)

+30/"B6(2(«IF4 ) G+ [«1 {D4,A6}'+2 «iF4A6 )' —(tr2Fj') G) —] tr, [{D, ,A6}A6]GQJ'3~/='&

- (d=6)—2J (~35, "+«i[A6{D6A,}]+-,' tr, A,') [tr, {D,,A, }{D,,A, j+ -,
' d, tr, A, ]~),=

i

S,= ——,', c { (trR,')(trR,') B,,
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&3 = „'00 c 30J 86[(trR4 )G+trR6 trF4~ ]+30& 84trA~~ tr, l(D4, A6}~+2F4Aq~]

+5J ~,'L="[«,A, (D, ,A, ) + -,
' «,A,']«~4'+ 5J ~),'=') tr, [(D,,A, ) A, ]tr~,'

+„ tri[(D4, A6)A6]cu)L= 'G+2 cu)), "Oi3L "[tri{D4,A6) {D6,A6)+ —,
'

d4tr, A6 ]

+2„' [F3(), '+triA6(D6, A6)+ —,
'

triA63]co)q~ 4)[tri(D4, A6}(D6,A6)+ —,
' d4triA63]

+ J [triA6(D6, A6) + —,
'

triA6 ]cl)3$ (triF4 —trpF4 )+30JI 86tr&6 trgF4

where

+2J Oi3L 0J)), [tri(D4, A6) (D6,A6)+ —,
'

d4triA6 ],

G = triF6 + tri (D6 A6) + triA6 + 2 triF6A6 + 2 tri ( D6,A6) A6

and tri and trq are the traces of 248-dimensional representations of Es and Es, respectively. We generically denote
Chem-Simon forms by cu. For instance, 0)3„, is the Chem-Simon three-form for the ~6 of E8 where all differen-
tials are in six-dimensional Calabi-Yau space. A hat denotes that the object is defined in terms of background
fields alone. Finally, {D4,A6 }= d4A6+ ( A&,A6). The rest of the notation is self-explanatory.

To exhibit the four-dimensional couplings which arise from the above structure, it is necessary to express A6 and
86 more explicitly as follows;

b»

X g(/)(x) II (i) (y)dzmP, dpi! (7)I-1
and

) dz~+A (3' »') dz~+A (»»)' dz~" +A (3".&7')'
d~

'
6 m JN JN tN

where a(') (x) 's are model-dependent axion fields, due
to the gauge invariance 86 86+dA in the ten-
dimensional supergravity Lagrangean. A (3 z ) and

(3 27 )A~(3 z7 ) also arise from the zero modes in Calabi- Yau
space, and can be written as

12

A (3,27) X X Txa( gi) ( )x6
n I fI (I) (y) (9)

I= 1 yX

cases, the index which labels generations or axions.
One can readily read off, from the discussions below,
the formulas for the other case bi~ ( bii, and also for
the case in which some of the C ' and some of the
C'(') remain simultaneously massless after compactifi-
eation.

Let us now extract lower-dimension operators which
arise from (4), (5), and (6). First of all, it is worth
mentioning that a dimension-four operator

g (3 , 27 ) „~cJI cu3L co3r (tr)F4z —trgF4z —5 trA4z )

b»

X(T )~C'" (x)g'" (y)&'".(y). (10)
I= 1 Xu

& '„,i~(y) and 0 '„(y) are, respectively, harmonic
(1,2)-forms and (1,1)-forms, bii and biz = bqi are Bet-
ti numbers of the manifold and Cg')(x) [C'(')x(x)]
are scalar fields in the 27 [27'] representation of E6.
The "stable" matter spectrum consists of I & I/2
= Ibii —biz{ massless E6 multiplets. From now on,
we treat the CaSe bI2 & b~~ and SuppreSS, in mOSt

coming from S3 vanishes identically thanks to the con-
struction of Ref. 4. The counterterms do not spoil the
anomaly-free property of the four-dimensional theory
which is achieved by the choice of fermion representa-
tion. Actually, this is a version of Witten*s observa-
tion that anomaly cancellation in ten-dimensional
sense ensures anomaly-free four-dimensional theories
after compactification. '

The lowest-dimension operators left after the com-
pactification of the counterterms are dimension-six
operators. Let us exhibit these. After tedious but
straightforward algebra, we obtain reasonably simple
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interactions:
11 12 11

Si +S2+S3 ld; 6= X K')'J a')(x)( —tr)F42+tr2F4 +5trR42) — X K(')~I d84C")~~C"'
80, 1=1

b12 —
&11

(i) 1 (d=4} 1 (d=4} 1 (d=4}x +(i}~ (i}C X K
& M

( 1440 &31. 7200 M3 y + 7200 &3 y ) C ~ C

where c =i"/6!(2 7r),

~12 ~11

+ c X p ( 2()8 trR4 + 3600 tr2F4 ) C C
i=1

K(i) =
~ &

n 1"fl (1) &an i II (1) d&m+ d&m trR 2

and

d~m
mn ma (12)

(i)
l

~bnlII (i) ( c~ ) a~ n' i' II (i) d~m v d~m "(&= )

Also (&~i )n~ and (&&, ), are covariant derivatives acting
on the 27 of E6 and 3 of SU(3), respectively. Observe more explicit, the ten-dimensional action is rescaled by
that K'" and K'"' are purely imaginary. under the transformation g~)v Xg~~, (t

The first term is a typical coupling of "model depen- and some rescaling involving fermions. The truncated
dent" axions to gauge and gravitational fields dis- action inherits this symmetry. On the other hand, the
cussed previously in the literature. "' The strength counterterms do not contain g)(r)v or $ in the right pro-
of the coupling differs in general for each axion. The portion to scale like )(.4. Thus the counterterms do not
other terms did not appear before. They have some scale like the tree-level action and violate this classical
features to be discussed below. A main purpose of the symmetry.
rest of this Letter is to see how (11) modifies Witten s A similar argument also applies to a rescaling proper-
truncated action7'2'3 which fits into a standard N = 1 ty' ' which is distinct from the above scale invari-
supergravity form. ance: (t r' (t, Kio «)0 and some rescaling for

The truncated action contains symmetries related to fermions. This is also broken by the counterterms.
the classical scale invariance7 in addition to N =1 local If the scale invariance is valid, it highly restricts the
supersymmetry and Peccei-Quinn-symmetry. To be form of the Kahler potential:

I

G= —1 (S+S') —31 (T+ T ) —h(C' C/(T+ T'))+I

S=@ 'e3 —i2D (14)

T=@e +iJ2a, (1S)
where the model-independent axion field D is related
to H„„a through a constraint 5&=D dH, giving the
equations of motion

where h(C, S, T) is a priori an arbitrary function and
generates D-type interactions between the matter
fields and S and Tgiven by

x= C" C/(T+ T') alone and, with Witten's trunca-
tion procedure, h(x) = —3 ln(1 —2x).

Since the counterterms violate the above-mentioned
symmetry, one naturally expects that the argument of
the function h be more general. In fact, the second
term and some pieces of the third term of (11) are
combined to give the coupling of the model-
independent axion to matter scalars ( cK/48)
x HC "&C. This changes the kinetic term for the D
field from ——,

' $2e 6 (B„D)2 into

W= ——,@ e [B„D—(J2/40)KC"N„C12. (16)
The symmetries mentioned above tell Us that the argu-

f th f ct'() st be the c() b' at'on)3 This form is suggestive of a more general Kahler po-
tential:

G= —ln(S+S ) —31n(T+ T ) —h(C' C/(T+ T'), C" C/(S+S ))+lnl ~l' (17)
with h (xy) = —3 ln(1 —2x) —in[1 —i&2(ck/20)y]. What we learned from (11) is the presence of axionlike in-
teractions between Sand the matter fields of the type given by (16) in the effective action.

One consequence of the violation of the scale invariance is that the "coupling function" f„r) of the gauge kinetic
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term fd 0 fqa II& JItt is no longer restricted to be of
the form f&tt~ S&hatt.

. In fact, because of the first term
in (11), it will pick up contributions to its imaginary
part of the form Imfza= —,', eK'a which after (15)
lead to an effective kinetic coupling fzg
=S+ nt(eK'/8042) T, i = E6, Fs, n6= —1, ns=+1,
of different strength for both gauge fields. In addition,
the fourth term in (11) proportional to tr2FFC' C is
CP nonconserving and amounts to a contribution to
the imaginary part of fztt unless the manifold is
chosen to make the coefficients p") vanish, guarantee-
ing the CP invariance of the four-dimensional theory.
A dimension-seven operator similar to this, namely„

tr2FF( W+ 8 ), appears too.
To summarize, we have shown that the residue of

the counterterms left after truncation can be under-
stood in terms of a generalized Kahler potential, in-
cluding D-type interactions between S and the matter
superfields, and a gauge kinetic coupling involving S
and T. The latter includes some unexpected seeds of
CP nonconservation in the observable sector.

A theorem recently shown by Witten's on nonrenor-
maiization of nonderivative F terms does not apply
here since the counterterms typically contain exact
forms, i.e., fB dX7. Corrections given in (11) are out-
side the domain of the conventional a-model pertur-
bation theory. They might contain some sources of
destabilization relevant to low-energy phenomenology.
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