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A recent result concerning the assignment of well-defined values to certain noncommuting ob-
servables in quantum ensembles which have been both preselected and post-selected appears to
show that quantum mechanics is "contextual. " Extending the argument to the case of measure-
ments on two separated spin-~ systems suggests that quantum mechanics is nonlocal. The signifi-

cance of these phenomena is evaluated, and it is shown that they have no bearing on the question
of contextuality or nonlocality.
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In a recent publication, ' Albert, Aharonov, and
D'Amato exploit an expression for the probability of
events between measurements first derived by Aharo-
nov, Bergmann, and Lebowitz2 to provide answers to
certain questions concerning preselected and post-
selected ensembles within the framework of orthodox
quantum mechanics. Suppose that an initial "non-
demolition" measurement of a complete commuting
set of observables M„on a system yields the state igtt,

and a final measurement (a certain time interval later)
of a different complete commuting set MF on the
same system yields the state tttF, where blitt and iitF lie
in t~o orthogonal eigenplanes which intersect in an
eigenvector nk corresponding to the eigenvalue mk of
a complete commuting set M. Provided that neither

pt nor pF is orthogonal to ak, a measurement of M
performed in the time interval between the measure-
ments of Mt and Mt; would yield the result mk with
certainty since, according to the Aharonov-Berg-
mann-Lebo~itz probability rule,

This prediction of quantum mechanics can, of course,
be confirmed by performing sequences of measure-
ments Mt M MF. All sequences in which the ini-
tial and final states are blitt and ittF will have the value
mk for M.3

For example, in a three-dimensional Hilbert space,
suppose that the three orthogonal eigenvectors of M
are ai, n, , u3. These vectors define three orthogonal
planes: Pi2, Pi3, P23 ~ If Qt & Pi2 [(ittt, d2)w0] and
4t- & P23 [(iitF, tx2) ~0] then a measurement of M per-
formed between the measurements of Mt and Mt;
would yield the result m2, corresponding to the eigen-
vector n2, with certainty. This example is discussed by
Albert, Aharonov, and O'Amato, who go on to show
that a measurement of W instead of M, where N is as-
sociated with the eigenvectors P, , P2=tx2, P3 (i.e., the
P basis is obtained by rotating the u basis about n2 in
the Pi3 plane), would not yield the result n2 corre-
sponding to u2 with certainty. This is because
prob&(ni)&0, since (4r Pi)~0, and (QF, Pi)&0, and
prob&(n3) &0, since (ittt, p3) &0 and (iltF, p3) ve0, and
clearly probtv(n2) ~ l.

The discrepancy between M and N is the "curious
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ncw statistical prediction of quantum mechanics" re-
ferred to in the title of the Albert-Aharonov-D'Amato
paper. The authors argue that this result calls into
question a crucial assumption underlying the Kochen
and Specker proof4 that a hidden-variable theory of
the quantum statistics is impossible, or the argument
via Gleason's theorem discussed by Bell. In the class
of hidden-variable theories relevant to these "no-go"
theorems, observables corresponding to self-adjoint
Hilbert space operators are represented by real-valued
random variables on a measure space parametrized by
the values of the hidden variables. These proofs re-
quire that the hidden variables assign the same value
to the random variable representing the projection
operator P, whether this observable is measured via

412

M or via N. In effect, the value assignment is required
to satisfy a "meshing condition, " that M has the value

m2 if and only if N has the value n2. Bell pointed out
that this assumption need not be satisfied at all points
in the measure space of hidden variables, in order for
a hidden-variable theory to generate the quantum
statistics for measures corresponding to quantum
states. Thus, these theorems do not exclude "contex-
tual" hidden-variable theories, in which the hidden
variables assign to P, values (1 or 0) in the context of
an M measurement which may differ from the values
assigned to this observable in the context of an N mea-
surement. In such theories, P, is represented by a

family of random variables, one for each complete
commuting set of observables to which P, belongs.

What Albert, Aharonov, and D'Amato appear to
have shown is that quantum mechanics itself is a contex
tual theory in this sense, for the values of observables in
ensembles which have been both preselected and
post-selected on the basis of measurement results.
That their argument is fallacious can be seen by noting
that the subensemble of the preselected Pt ensemble
that is post-selected for &F via an intervening M mea-
surement differs from the subensemble that is post-
selected for illF via an intervening N measurement.
With p, , illF, M, and N as chosen by Albert, Aharo-
nov, and D'Amato, one-quarter of the preselected en-
semble is post-selected via the intervening M measure-
ment (all these systems having yielded the value of m2
for M), while three-eighths of the preselected ensem-
ble is post-selected via the intervening Xmeasurement
(only two-thirds of these systems having yielded the
value n2 for N). Thus, the notion of a statistical en-
semble which is specified by preselection a«post-
selection via an arbitrary intervening measurement is
not well defined in quantum mechanics. Put simply,
systems initially in the state pt which are subjected to
an N measuremcnt, and subsequently yield the state

pF after an MF measurement, would not necessarily
yield this final state if subjected to a measurement of

M instead of N. Post-selecting for the eigenvector pr
of MF after an M measurement is not the same thing
as post-selecting for pF after an N measurement.

It is possible to construct an example in a four-
dimensional Hilbert space, analogous to the three-
dimensional example of Albert, Aharonov, and
D'Amato, in which the fraction of the preselected Qt
ensemble that is post-selected for QF is the same for
different intervening measurements. In this case, with
an appropriate choice of Pt, QF, M, and N, quantum
mechanics appears to be nonlocal.

To see this, consider the question which Bell posed, 7

whether the contextuality of hidden-variable theories
necessarily extends to the case of spatially separated
composite systems —say, two spin- —,

'
systems, S and

S', represented in a four-dimensional Hilbert
space —in such a way as to violate locality. Specifical-
ly, suppose that we consider a measurement of the
complete commuting set M on the composite system
associated with the basis defined by the four vec-
tOrs Hl=nl 8 nl~ 82=nl 8 n2, 83=n2 8 nl, 84=n2
8 n2, Where ni, n2 are the eigenVeCtOrS Of the Spin

component in some direction, say a, for S, with corre-
sponding eigenvalues ai, a2 (for spin "up" in the a
direction, spin "down" in the a direction), and ni, n2
are the spin eigenvectors for S'. Thus, M is the set
( J„J,'}. Bell showed that any hidden-variable theory
capable of reproducing the quantum statistical correla-
tions for the separated systems would have to be non-
local in the following sense: Suppose that we change
the n' basis to pi, p2, corresponding to a measurement
of the spin component in a new direction on S', gen-
erating a neW baSiS, ni 8 pi, ni 8 p2, n2 8 pi,
n2 8 p2, associated with a measurement of the com-
plete commuting set N= (J„jt,'} on the composite
system. Then there must exist a discrepancy between
M and N with respect to the value of the spin component
of S for some values of the hidden variables. This
result has been generalized in various ways to cover a
wide class of hidden-variable theories, including sto-
chastic hidden-variable theories.

Now, suppose that there existed a quantum state W'

characterizing the composite system S+S', with the
following property: If we were to measure spin in the
a direction on S and spin in the a direction on S, then

probir(ai) = 1,

but if ~e ~ere to measure spin in the a direction on S
and spin in some other direction b on S', then

probe (a i) ~ 1.

If such a state existed, quantum mechanics would be a
nonlocal theory, and pairs of systems prepared in this
state could be used to communicate information su-
perluminally. Of course, no such state exists. But we
find precisely this situation for quantum ensembles
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which have been appropriately preselected and post-
selected (and which cannot therefore be characterized
by a unique quantum state). In this case superluminal
communication is blocked because the probability as-
signments refer to the interval between measure-
ments.

To construct the example, let MI be the complete
commuting set corresponding to the basis formed by
the three vectors of the triplet state and the single
vector of the singlet state: 8&, —,

' v 2(82+ 83),
—,
' J2(82 —83), 84, i.e. , Mi consists of the operators

( J2[S+S'], J, [5 +5'l I for the composite system.
Let pi be the singlet state, i.e.,

ei 2 ~2(82 83) ~ P23 ~

where P23 denotes the plane spanned by 82, 83.
Let Mi. be the complete commuting set correspond-

ing to the basis yt 8 at & Pts, at 8 o2 & P24,
8 A j E Pt3 y2 8 a2 & P24, where the y basis corre-

sponds to a measurement of the spin component in a
new direction on S, i.e. , MF = ( J„J,, ). Let

4F y18 ~2~P24

Now suppose that S and S' separate in space and
consider M and N as above, where N differs from M
only with respect to the direction of the spin measure-
ment on S'. Note that o.t 8 p& C P~2, n) 8 p2 C Pt2,
&2 8» & P34. &2 8 p2 & P34

Since pi E P23 and pF E- P24, it follows that
prober (m2) = 1, since prob4i (mk ) = 0 for k = 1, 3, 4,
by (1). But this means that

prob4i(a&) = 1,

i.e. , the system S would register a spin component up
in the a direction with certainty for a measurement of
M performed in the interval between the measure-
ments of Mi yielding Pi and MF yielding PF.

Now consider the measurement of N. By (1) we no
longer have prob&(nk) = 0 for k = 3, 4, and so
prob„(a, ) &0 and

probii (a & )e 1,

i.e., the system 5 would not register a component up in
the a direction with certainty for a measurement of N
performed in the interval between the measurements
of Mi yielding pi and MF yielding pi.

If we choose

p', = —,
' &2m', + —,

' J2u2',

p2= —,
' J2e', ——,

' J2u2',

y, = —,
' J2u, + —,

' J2u2,

y, = ,
' Jan, ——,

' J2a2, —

then one-quarter of the preselected ensemble is post-

selected for pF via either intervening measurement, so
that we even have a case in which the ensembles
characterized by the same preselection and post-
selection but different intervening measurements
(of M or N) are not manifestly different, yet
prob~(at) = 1 and probiv(at) = —,

' .

Apparently, there exist ensembles which have been
both preselected and post-selected on the basis of ap-
propriate measurement results, with the curious prop-
erty that whether or not a system registers spin up in a
certain direction on measurement depends on the
direction in which spin is measured on a system S' to
which it is coupled, even if S and S' are separated by a
spacelike interval. Does this mean that quantum
mechanics is a nonlocal theory?

Now, although the fraction of the ensemble
preselected for Pi which is eventually post-selected for
pF after an intervening M measurement is the
same —one quarter —as the fraction which is post-
selected for pF after an intervening N measurement,
there is no warrant for the inference that these frac-
tions represent the same subensemble of the original
preselected ensemble. If M is measured on the
preselected ensemble specified by P, , half the systems
make a transition to the state n& 8 n2, and half of
these make the transition to the post-selected state PF.
No other systems are post-selected for PF. Call this
ensemble E; it is a subensemble of the preselected en-
semble characterized by a condition concerning subse-
quent transitions in a sequence of measurements of M
and MF, viz. , pi u& 8 uz pF. If N is measured
instead of M, one-quarter of the systems make a tran-
sition to the state ai 8 p& (i = 1, 2; j= 1, 2) and one
quarter of these, for each i and j, make the transition
to the post-selected state P~. Call this ensemble E', it
is a subensemble of the preselected ensemble charac-
terized by a condition concerning subsequent transi-
tions in a sequence of measurements of N and MF,
viz. , the transitions Qi ~, 8 p& (i = 1, 2; j= 1, 2)

The argument for nonlocality does not go
through unless E = E', and there is no reason to sup-
pose that this is the case.

Conclusion The some—what curious analogs of con-
textuality and nonlocality which arise in the statistics
of quantum ensembles which have been preselected
and post-selected via an arbitrary intervening measure-
ment have their origin in the fact that such ensembles
are not well defined without specification of the inter-
vening measurement. in particular, these phenomena
have no bearing on the question of the contextuality of
nonlocality of hidden-variable reconstructions of the
quantum statistics.
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