ERRATA

Strangeness Production in the Quark-Gluon Plasma. JOHANN RAFELSKI and BERNDT MÜLLER [Phys. Rev. Lett. 48, 1066 (1982)].

We have recently discovered two compensating errors (factors of 2 and $\frac{1}{2}$) which leave the main result, presented in Eq. (10) and Fig. 2(b), unchanged.

In Eq. (3) we omitted a factor of $\frac{1}{2}$ required in order to avoid double counting of gluon pairs. The corrected equation reads

$$A = \frac{dN}{dt \, d^3 x} = \frac{1}{2} \int_{4M^2}^{\infty} s \, ds \, \delta(s - (k_1 + k_2)^2) \int \frac{d^3 k_1}{(2\pi)^3 |k_1|} \int \frac{d^3 k_2}{(2\pi)^3 |k_2|} \times \{ \frac{1}{2} (2 \times 8)^2 f_g(\mathbf{k}_1) f_g(\mathbf{k}_2) \overline{\sigma}_{gg \to s\overline{s}}(s) + 2 \times (2 \times 3)^2 f_q(\mathbf{k}_1) f_{\overline{q}}(\mathbf{k}_2) \overline{\sigma}_{q\overline{q} \to s\overline{s}}(s) \}.$$
(3)

Consequently, the right-hand sides of Eqs. (7) and (8) must be multiplied by $\frac{1}{2}$ as well.

·----

Equation (9b) should read

$$n_s(t) = n_s(\infty) \tanh(t/2\tau) \xrightarrow{t \to \infty} n_s(\infty) (1 - 2e^{-t/\tau}), \quad \tau = n_s(\infty)/2A.$$
(9b)

The asymptotic form of the tanh function involves an extra factor of 2 in the exponent and, hence, the relaxation time τ contains an extra factor of 2 in the denominator.

Note that the central result, the gluonic strangeness equilibration time, Eq. (10) and solid lines in Fig. 2(b), remains unaffected by these changes.

Experimental Signals for Hyperphotons. S. H. ARONSON, HAI-YANG CHENG, EPHRAIM FISCHBACH, and WICK HAXTON [Phys. Rev. Lett. 56, 1342 (1986)].

The following typographical errors in our paper should be corrected as indicated:

Equation (11) should read $|T|^2 = \overline{f}^2 \Sigma$...

In Eq. (13), f^{w} should read f^{2} .

In the third sentence following Eq. (18), $\lambda \cong 15$ m should be replaced by $\lambda \cong 25$ m.

Infinite Conservation Laws in the One-Dimensional Hubbard Model. B. SRIRAM SHASTRY [Phys. Rev. Lett. 56, 1529 (1986)].

Equation (7) should read

$$L_{n+1,0}^{-1}R_{n,n+1,0}L_{n,0}^{-1} = G_{n,n+1,0} - G_{n+1,n,0}^{\dagger}.$$
 (7)