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Location of Renormalization-Group Fixed Points

Swendsen! has presented a method of optimizing
real-space renormalization-group (RG) transforma-
tions which provided improved convergence in es-
timating critical exponents for the d=3 Ising model.
On this basis he suggested! that by proper choice of a
RG kernel, “‘it is possible to place the fixed point any-
where on the critical hypersurface,’’ arguing ‘‘that this
does not conflict with the association of irrelevant
operators with corrections to scaling.”” In this Com-
ment we show that these assertions are, in general, in-
correct. (It is not our intent, however, to criticize any
of Swendsen’s numerical results or to take issue with
the effectiveness of the optimized transformations he
actually implements.)

Consider, for simplicity, the RG formulation for a
family of systems, like ferromagnetic Ising models in
zero field, with only one relevant scaling variable. We
show, first, that for a given renormalization group %%
there is a one-dimensional locus in the parameter
space, the ‘‘principal trajectory’’ II, along with there
are no singular corrections? to a pure power law when
the critical manifold is approached. The argument is
most easily grasped when a two-dimensional field
space, (tu), suffices to describe the RG flows and
t=1t.(u) describes the critical manifold: One may re-
gard ¢ as the temperature and u as a secondary variable
modifying the Hamiltonian. For a spatial rescaling fac-
tor b=e!, the flow equations for ¢, u, and a thermo-
dynamic function G (t,u), say a diverging susceptibili-
ty, are generically of the form? dt/dl=Q(tu),
du/di=R(tu), and dG/di=P(tu)G+U(tu),
where U, P, Q, and R are differentiable functions. At a
fixed point (¢*,u*) of #, which we suppose is the only
one in the region of interest, one has
O(,u*)=R(¢*,u*)=0. On linearizing”® about
(#*,u*), it is straightforward to prove®* that, in gen-
eral, G is asymptotically of the scaling form

G(tu)=ltl=7X(alt]®) + G, 1)

where (i) 7 and # are definite, independent linear com-
binations of the deviations Ar=t—¢* and Au
=u—u", (ii) y is the exponent for G, and (iii) the
correction-to-scaling exponent, 0, is positive since, by
hypothesis, # is an irrelevant variable. To ensure the
analyticity of G (t,u) away from criticality, the scaling
function, X (y), must be a smooth function®* with an
expansion Xo+X,y+...: In general, therefore,
G (t,u) contains a nonanalytic correction of the form
Xltl=vy=Xaltl= < atlt— . (u)|=7*%,  where,
near the fixed point, f,(u4) is determined by ¢ =0.
Evidently, this leading singular correction vanishes on
but, in general, only on the special locus # =0, which
intersects the critical manifold ar (and only at) the
fixed point: This locus, II, is just the unstable (or out-
going) trajectory emerging from (¢*,u").
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Now consider a second RG, say gf’ , operating in the
same space and having a single fixed point (¢*,a%)
which _differs from® (¢*,u*). The new principal trajec-
tory, II, cannot be II: Thus a pqrallel analysis for #
predicts the nonvanishing of the |7|~7*® corrections to
G ~ |t|~” along the original trajectory, II. But the
thermodynamic function G (t,u) must have a unique
functional depedence along any path in (t,u) space ir-
respective of what RG is used to analyze the system.
One must thus conclude that any (nonsingular) renor-
malization group fitting the problem will share the
same (nontrigial) fixed points and, indeed, the same
scaling axes, t =0 and # =0, also.

The corrections induced by # may be wholly analytic
if @ is an integer (although, more typically, log|z| fac-
tors will enter?); it should then be possible to move the
fixed point on the critical manifold. The same may
(but usually will not) be true when 6 =0 and so a mar-
ginal variable is involved. The extension to further
variables u,,us, . .. does not alter the situation’: On,
but only on the trajectory, II, leaving the fixed point all
singular corrections vanish. However, redundant vari-
ables® should be recalled. These represent reparam-
etrizations of the basic fields which cannot change the
physics (since the fields are integrated out in defining
the partition function). One fixed point may be
mapped into another by a change of redundant vari-
ables and two RGs, say # and %, may produce for-
mally different fixed points by this mechanism.
Nevertheless, a general point on a critical manifold
cannot be transformed into a fixed point nor vice versa.
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