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Onset of Global Phase Coherence in Josephson-Junction Arrays:
A Dissipative Phase Transition
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A theoretical analysis is presented of the problem of the onset of global phase coherence in

granular superconductors and Josephson-junction arrays. It is shown that the ratio ( h/ e')/R,
where 8 is the resistance, plays an important role in the thermodynamics. This is due to quantum
fluctuations of the order parameter and occurs in superconductivity only because the phase of the
order parameter is both a statistical as well as a dynamical variable. The theory provides a natural

qualitative explanation of the recent experiments of Orr, Jaeger, Goldman, and Kuper.
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Qn the basis of experiments on thin films of granu-
lar superconductors, Orr, Jaeger, Goldman, and
Kuper' concluded that the onset of global phase coher-
ence is governed by the normal-state sheet resistance
R; a film was found to become superconducting only if
R was less than a critical resistance proportional to
Ro= h/e2. Moreover, they suggested that this
behavior is not due to disorder as in percolation or An-
derson localization, but rather is due to the dissipation
in the resistive elements.

This experiment and others2 which are consistent
with the present one raise a number of fascinating is-

sues. Classically, the dynamics and the thermodynam-
ics of a system are separate, so that dissipation could in
no way affect thermodynamics! Moreover, it is an es-
tablished, but nevertheless remarkable fact that
phenomena involving superconducting and many oth-
er condensed states can be treated in terms of an
order-parameter theory in which the expectation value
of an appropriate quantum field operator is treated as a
macroscopic dynamical variable. Even when the
underlying condensed state is highly quantum
mechanical, as is the case in superconductivity, the or-
der parameter can usually be treated classically since
quantum fluctuations of a macroscopic variable are

usually small. The validity of this approach has been
spectacularly confirmed by experiments involving the
Josephson effect. Only recently has it been demon-
strated that quantum fluctuations of the order parame-
ter can be observed. 3

It is the purpose of this paper to show that under
conditions in which quantum fluctuations of the order
parameter are important the dissipation enters the
thermodynamics as a critical parameter. This can oc-
cur in superconductivity only because the phase of the
order parameter is both a statistical as well as a quan-
tum dynamical variable. Our theory thus provides a
natural qualitative explanation of the experiments of
Orr et ai

To be concrete, we consider a collection of super-
conducting grains with Josephson coupling between
neighboring grains. We imagine that the largest
Josephson coupling Vis weak, i.e., V (( kaTt. , where
Tc is the bulk superconducting transition temperature,
and we focus on temperatures T & V/ka. Since
T &( Tc and the grains themselves are macroscopic,
we can ignore the fluctuations of the magnitude of the
order parameter, b (T); but the phase 8, on each grain
j remains a dynamical variable. A rather general Ham-
iltonian for such a system is (b, 8,&

= 8; —8, )

H = —'XM, 8 + X V" (1—cosh8 ) + g X—'m (x' +co x't ) + X58"Xf'Jx'J (1)
(tj} (i&)' ~ (ij')

where M, = C;(t/2e)2, C; being the capacitance of the ith grain. The Josephson coupling energy V;, between the
grains i and j is given by lcj(@0/2m), where leo is the critical current and go= h/2e. The sum (ij ) is over nearest-
neighbor pairs. The first two terms constitute the widely studied standard phase Hamiltonian. Here, we have ad-
ded to the model the effect of dissipation in the junctions by coupling to a heat bath. s This Hamiltonian is con-
structed to be consistent with the usual resistively-shunted-junction equation with Ohmic damping. C;, V;, , and
f'~ are in general random variables.

After integrating out the oscillator degrees of freedom, the effective Euclidean action functional from which we
compute the thermodynamics is given by

Setr= —,'g dr XMt8; +2 X Vtt(1 —cosh8(t) + Xlto„l Xcrtth8g(tt)b8tj( —n), (2)
&IJ)

where nit = (m /)2(k e/)/Rtt with Rtt the shunting resistance between the grains i and j. The last term in S,tr
represents the dissipative effect of the environment. For later convenience we have expressed it in the form of a
series, where to„=2m n/P are the Matsubara frequencies and iN &(n) is the Fourier transform of b8tj(r). We
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have assumed Ohmic dissipation characterized by a

spectral density of the bath

&(g l~ l8(~«
2m

(3)

where «u, is a high-frequency cutoff of the order of a
typical microscopic frequency.

The action functional given in Eq. (2) is very gen-
eral. We start with the simplest case of a perfectly or-
dered d.dimensional simple-cubic array where C, = C,
V»= V, and R»=R for all i and j. There are two
reasons for considering this case: (a) Such arrays can
and have been fabricated lithographically, and (b) the
dissipative aspect of the phase transition that we are
interested in depends very little on the disorder as we
shall discuss.

F'= F„+(H —H,„)„~F, (4)

where H is the true Hamiltonian, and F,„and ( . )„
are the free energy and thermal average computed
with the trial Hamiltonian 0„. %e choose the trial
Hamiltonian or equivalently the effective trial action8
to be the following:

The model can still not be solved exactly even if the
dissipative term were absent. %e shall pursue a varia-
tional approach to argue that an important aspect of
the dissipative transition is associated entirely with the
infrared property of the spectral density of the Ohmic
heat bath [J»(~) «0, «0 0] which leads to results
similar to those obtained earlier7 in the context of
macroscopic quantum effects in Josephson systems.
Moreover, we believe that the variational approach
should give semiquantitative results for the phase dia-
gram.

A variational estimate F' of the true free energy F is
constructed by use of the Gibbs-Helmholtz inequality8

S«, = 2 d7 MX8; + DX& 8»(&) + Xlm, l Xb8»(n)58»( —n),
(ij) n (ij)

where the variational parameter D is the effective
spin-wave stiffness constant. The underlying physical
picture is that if the system has a global phase coher-
ence, then the spin-wave stiffness will be finite, but if
it does not, D will be zero. Global phase coherence in
the spin language is also the same as the global phase
coherence in the sense of superconductivity.

At this point we mention a technicality9 concerning
our trial action; to be more precise, the potential
should be periodic under 8, 8, + 2m which the quad-
ratic potential in Eq. (5) is not. Thus, one should real-
ly consider a periodic ("scalloped" ) potential which is
quadratic about each of its equivalent minima. For
large D, where the phase fluctuations are small, this is
a trivial change since the different wells make, to an
excellent approximation, independent contributions to

D/ V = exp( ——,
' (a8,,') „),

~here

(6)

F' which can be evaluated directly from Eq. (5).
When phase fluctuations are of the order of m (i.e. , for
small D) the periodicity of the potential must be treat-
ed carefully. This has not been necessary for our
results. Specifically, to determine the location of the
spinodal and the continuous transition points, it is only
necessary to evaluate the derivative of the free energy
with respect to D. Thus we never need to compute F'
as D 0 (cf. below).

With this in mind, minimization of F' with respect
to D leads to the self-consistent equation for a d-

dimensional hypercubic lattice

z —2 X,', cosk;a

«-o cu~z/Eo+ (D+ ace„/2n ) z —2X«d, cosk, a

with E0=4e /Cand a = (m/2)(t/e )/R. zis the coor-
dination number and Nd is the total number of bonds
in the lattice. The k sum runs over the first Brillouin
zone.

The phase diagram is obtained from Eq. (6). We
characterize the transition to be first or second order
depending on whether the nontrivial (DAO) solution
of Eq. (6) appears discontinuously or continuously.
Actually what we are calling a first-order transition is,
strictly speaking, a spinodal point. The true transition
takes place only when F'(D ) = F'(D = 0).

2304

The zero-temperature phase diagram is shown in
Fig. 1 for d =1,2, and 3. The vertical boundary at
u = 1/d is a line of second-order transition. We specu-
late that this is an exact result (see below). It is clear
from the figure that for low dissipation, when V/Eo is
sufficiently small, quantum fluctuations destroy the
long-range phase coherence even at T=O. The in-
teresting point to note here is that for all values below
a threshold the second-order transition takes place at
u=1/d regardless of the value of V/Eo. Since the
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only place at which capacitance enters the problem is

Eo, the capacitance is an irrelevant variable in this re-
gime and the transition is entirely dictated by n I.t is

perhaps in this sense that one has to interpret the
statement of Orr, Jaeger, Goldman, and Kuper that u
is the only relevant variable. %hen o. is greater than
1/d, the dissipation suppresses the quantum fluctua-
tions and restores global superconductivity. At finite
temperature, the transition is always first order in the
sense described above. The transition temperature
T"(a, V/Eo) is an increasing function of both of its ar-
guments.

The above self-consistent harmonic approximation
is, of course, not reliable in the critical region. In or-
der to understand the critical region we are pursuing
renormalization-group calculations. ' Partial results
allow us to conclude the following: At any nonzero
temperature the phase transition is what one would get
from an effective classical XY model of the same
dimension as the array provided that one goes very
close to the transition temperature. In particular, the
parameters of the effective classical Hamiltonian are
affected in a novel way by the presence of dissipation.
For instance, in the lower left-hand corner of the
phase diagram in the figure the effective coupling
between grains renormalizes to zero. There is also an
interesting crossover from zero-temperature quantum
critical behavior controlled by dissipation to the finite-
temperature classical behavior. As a result, for large n
the critical region becomes extremely small.

We now describe in more detail our calculations and
results in the novel regime of weak coupling and low
temperatures, Eo» 2n/P, 2nD/u, where quantum
effects are most important. In this regime Eo serves
only to define a high-energy cutoff for the sum in Eq.
(7) at no=/3EO/2m', otherwise ~2/Eo can be ignored.
The k sum is trivially performed by assumption of a
spherical Brillouin zone. (It can be shown that a better
approximation to the Brillouin-zone sum does not
change the conclusion that the transition is at
u =1/d. ) The self-consistent equation determining D
now becomes

' 1(da
m

PEo

t'

1 D
exp

dn a

where p(x) is the digamma function. In the limit
P ~ this equation leads to the solution"

' 1/(de-1) r da/(da 1)
21r V

D —= 0, n ~ 1/d.

Thus the transition takes place at a = 1/d in d dimen-
sions. As noted earlier the capacitance only enters
through Eo which merely sets the energy scale, but the
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FIG. 1. The phase plane for T=O for d=1, 2, and 3:
The superconducting phase lies above the curves, and the
normal state below. D changes continuously across the
dashed lines and discontinuously across the solid lines.

critical parameter a depends only on the resistance. It
is important to realize that this result is critically
dependent on the fact that the heat bath we have con-
sidered is Ohmic [cf. Eq. (3)]. At low temperatures it
is not difficult to show that the transition line between
the normal and the superconducting phase in the n-T
plane is given by

' 1/da
tl'x p

Eo V/Eo 2n
exp— y(xo)

1

' ' da/(1 —da)

(10)
where T' denotes the transition temperature and xo is
the solution of the equation xo-dn/P'(xo). The
first-order lines in Fig. 1 were obtained numerically.
With regard to the first-order line we would like to
caution the reader that its position is sensitive to the
details of the model, in particular to the precise form
of the spin-wave spectrum at all k. The results in Fig.
1 assume a Debye spectrum. In short, the exact loca-
tion of the first-order line, but not its very existence,
is quite model dependent.

Finally, we would like to discuss the effect of disor-
der. Since there exists a correlation length that
diverges at the second-order line, weak disorder can
only change the result from a = 1/d to a =3 /d, where
A is a number of the order of unity. However, we ex-
pect strong disorder to be a common feature of the
composites such as those studied by Orr et al. because
the Josephson coupling between the grains i and j is
proportional to a tunneling matrix element, as is 1/R,,
Thus, we expect V~ and R,~ to be log-normally distrib-
uted and strongly correlated with each other. In fact,
most naively, we expect R& V&

= const x h.
We now argue that even though the distributions of
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resistances P (R )dR and of Josephson couplings

Q ( V) d V —P (/J, /R ) ( V/R )dR are extremely broad,
the problem is equivalent to a network with a larger
lattice constant and a narro~ distribution of 8 and V.

Our argument is based on a percolation treatment akin
to that of Ambegaokar, Halperin, and Langer' and
Deutscher et al. '3 %'e imagine removing all resistors
with 8;J && R„and replacing those with R;, && R,
with short circuits. We are left with a new network
with P(R, )hR resistors, narrowly distributed over a
range AR about R, . If R, is chosen so that the net-
work just percolates (for /J, R 0) and AR is chosen
appropriately, the resulting network has approximately
the same normal-state resistance as the original net-
work. In much the same way, as we approach the su-
perconducting transition, all those junctions with

V,, (( V, and R,, &) R, ( V,R, —5) can be ignored
since the phase fluctuations across the junctions are
enormous. Similarly, all junctions with V'j && & and

R,, && R, can be treated as superconducting wires
since the phases of the two grains connected by that
junction are essentially locked, and the two grains can
be treated as a single grain. Thus, for the purposes of
computing both the normal-state resistance and the su-
perconducting transition the highly disordered system
is equivalent to a weakly disordered system.

In conclusion, we note that we have shown that if
the quantum fluctuations of the phase of the super-
conducting order parameter are important, the dissipa-
tion can play a crucial role in determining the onset of
global superconductivity, and have thus provided a na-
tural qualitative explanation of the recent experiments.
Orr et al. have made the interesting speculation that R
is the only relevant variable determining the onset of
global phase coherence and that therefore in two
dimensions, where R ~ and T 0, there is a
universal disappearance of superconductivity. It is
clear from our work that for strongly coupled Joseph-
son junctions (cf. Fig. I) global phase coherence per-
sists when n 0 (R ~). However, in the quan-
tum regime where V/Eo is small and T is near zero, R
is indeed the sole critical parameter. For a better
understanding of the fascinating issues that these ex-
periments raise, it would be useful to perform these
experiments with use of ordered arrays.
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