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Superconducting-Normal Phase Boundary of a Fractal Network in a Magnetic Field
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Experimental measurements of the superconducting-to-normal phase boundary for a Sierpenski-
gasket wire network are presented. The fractal phase-boundary curve, T, (H), shows four orders
of dilational invariance and is in excellent quantitative agreement with theoretical predictions. The
fracton dimension, d, has also been measured and is found to be 1.3S 0.02, consistent with the
calculated value of 1.36S for the planar Sierpinski gasket.

PACS numbers: 64.40.Ak, 73.60.Ka, 74.10.+v

In recent years considerable attention has been de-
voted to the study of the properties of disordered sys-
tems with the hope of a better understanding of the
percolative aspects of phenomena such as the spin-
glass, ' metal-insulator, and superconducting transi-
tions. Central to many of these studies are the con-
cepts of randomness and frustration. A particularly
elegant experimental model system for isolating the
effects of frustration is the regular array of supercon-
ducting wires (or Josephson junctions ) in which the
level of frustration is continuously tunable via an
external magnetic field. It is essential to incorporate
randomness in order more closely to model real sys-
tems (glasses, percolating films, etc.). Recently, it has
been proposed that a family of regular, fractal net-
works (in two dimensions, the Sierpinski gasket) share
important geometrical features with the backbone of
the infinite cluster of the percolation problem. 6 In ad-
dition, because of their dilational symmetry, statistical
mechanical and transport problems are exactly solvable
on these fractals, making them counterparts of the reg-
ular arrays and attractive candidates as model systems.
Finally, study of the Sierpinski gasket (SG) network is
inherently interesting because of its lack of translation-
al invariance and its anomalous (fractal and fracton)
dimensionalities.

In this Letter we report our experimental investiga-
tions of the properties of a superconducting
Sierpinski-gasket network in a magnetic field. This is
an exactly solvable model problem incorporating an
adjustable level of frustration and important geometri-
cal elements of randomness. We have found that the
richly structured phase boundary, T, (H), of the
gaskets is quantatively fitted by theoretical predic-
tions, and that the self-similarity of the gasket mani-
fests itself in up to four orders of dilational invariance
in our experimentally determined phase boundary.
Further, from a quantitative analysis of the depression
of T, in a magnetic field we have made the first exper-
imental determination of the critical exponent for dif-

fusion, 'o 0 (and thus the fracton dimension), and find
it to be in agreement with calculations.

The samples were prepared by evaporation of pure
aluminum films onto oxidized silicon substrates.
These films, 100 nm thick, were deposited directly
onto the substrate through a lift-off mask written into
a multilayer resist by use of a Cambridge EBMF-2-150
Electron Beam Microfabricator. The gaskets (details
are shown in Fig. 1) are of tenth order and have
linewidths of 0.3-0.4 p, m. The elementary triangles
which generate the network have an area of
a =1.38+0.01 p. m2 as determined from micrographs.
Because of restrictions in the pattern-generating sys-
tem the triangles are not truly equilateral; rather they
are are isosceles with both the base and height equal to
1.66 p, m.

The normal-state sample resistance, approximately
20 0 at 4 K, was measured with a four-probe ac bridge
biased at about 1 p, A. The important intrinsic proper-
ties such as the resistivity, p=0.42 p, Q cm, and the
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FIG. 1. An electron micrograph of a fourth-order section
of the Sierpinski gasket. The size bar represents a length of
10 p, m.
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coherence length, g(0) =0.26 p, m, were inferred from
resistance measurements on coevaporated 2D films
and from the quadratic background of the phase boun-

dary, T, (H),3" which is associated with the one-
dimensional character of the wires of the network.
Temperature was determined from the resistance of a
calibrated Ge resistor.

In order to generate the T, -H phase boundary the
sample resistance itself was used as the sensor in the
temperature-controlling system. Typically, the tem-
perature was regulated so as to fix the sample resis-
tance at one-half of its normal-state value, Rz. The
superconducting phase-boundary curves, T, (H), were
then swept out by stepping of the magnetic field in

small (millioersted) increments and averaging of the
transition temperature at each value of the field. Tem-
perature measurements were reproducible from sweep
to sweep and had a relative accuracy of about 50 p K.

A dramatic series of oscillations of T, with field is
observed on top of the quadratic background (Fig. 2).
This complex behavior, reminiscent of the Little-Parks
effect in cylinders'2 and the phase boundaries seen in

regular arrays, 3 is due to the highly ramified structure
of the SG network. The fundamental period HO=15
Oe (the first period runs from —7.5 to 7.5 Oe) is due
to the fluxoid-quantization condition on the elementa-
ry triangles and corresponds to an area of $0/HD = 1.38
p, m2 which agrees with the value measured directly
from micrographs. Here tto ———hc/2e is the supercon-
ducting flux quantum. We have observed up to five
orders of fundamental oscillations on either side of the
field origin. Samples which appeared to be regular
under the scanning electron microscope had phase

boundaries consistent with theory. Those with geome-
trical errors did not exhibit the full range of structure.

The nature of the superconducting states on the SG
in a magnetic field has recently been the object of a
great deal of theoretical work. '3 '5 Near the second-
order phase boundary, where w (( )t. , ( in our sam-

ples, the properties of the gasket are expected to be
well described by the linearized form of the Ginsburg-
Landau equation, which is formally identical to the
Schrodinger equation for a doubly charged particle in a
magnetic field. 4 Alexander'3'~ and de Gennes'5 have
expressed the network Ginsburg-Landau equation as
an eigenvalue problem in terms of the order parameter
at the nodes, I . For a node a connected to neighbor-
ing nodes P, with wire lengths Lo, the equations are
written

eA —= [zcos(LO/g)h = +b~exp[ —iy It j (1)

Here z is the node coordination number (4 in the case
of the planar SG) and y @

= (2tr/tt 0)f A dl is the cir-
culation of the vector potential along the link aP. For
low-order gaskets (zero order is a single triangle, first
order is built from three triangles, etc.) these ques-
tions may be solved directly. Rammal and Toulouse9
have calculated the spectrum for a second-order gasket
in a magnetic field (the phase boundary is the band
edge of this spectrum); however, for higher-order
structures this method becomes hopelessly difficult.
Recursion relations exist9 which allow one to deter-
mine, in principle, the eigenvalue spectrum of (1) at
arbitrarily high orders.

In Fig. 3(a) we have plotted the first period of the
experimentally determined phase boundary (solid
line). The applied field is scaled in units of the super-
conducting flux quanta per elementary triangle:
$/$0= H(a/@p). The points overlying the data
represent the band edge of the second-order spectrum
calculated by Rammal and Toulouse. The temperature
axis has been scaled to fit the data at Q/@0= —,

' . Exper-
imentally, the depression of the transition temperature
at this point is d T, ($/$0= —,

' )/T«—=0.025. This is in
excellent agreement with the theoretical prediction

1.12— g2(0), ~(p/&0= —,')
MCCOS

Lo z

=0.024.

FKJ. 2. The
T, (H)
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phase boundary,

We have used the mean length La=1.73 p, m and
$(0) =0.26 p, m as discussed earlier. In addition to the
good agreement relating to the magnitude of the dip in
T, the match of the functional form of the theory to
the data is also quite good. A detailed inspection of
the data, however, reveals a great deal of fine structure
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FIG. 3. (a) The superconducting transition temperature
as a function of the normalized flux through an elementary
triangle of the gasket. The solid line is experimental data
and the points represent the theory for a second-order
gasket scaled to fit the data at $/$0= T (Ref. 9). In (b)-(d)
the field axes have been expanded 4, 16, and 64 times,
respectively, in order to highlight the small-field structure in

T, (H). The self-similar nature of the curve is made ap-

parent by our superimposing the second-order theory on
each plot.

which presumably would be described by the higher-
order theory. The second-order curve provides an en-
velope for all higher-order calculations of the band
edge. The fine detail at low fields is in marked con-
trast to the linear behavior in regular arrays and the
quadratic behavior in the Little-Parks effect. '2

The apparent difficulty relating to the lack of theory
at small fields may be resolved by use of the dilational
symmetry of the gasket and thus the phase boundary
curve itself. From one order of the gasket to the next
there is a factor of 4 decrease in the enclosed area, cor-
responding to a factor of 4 dilation in the flux. In Fig.
3(b) we have expanded the field axis of our data by a
factor of 4 in order to highlight the structure in T, at
small fields. The striking similarity to the original data
[Fig. 3(a)] is made clear by overlaying the (also ex-
panded) second-order theory. Two more orders of this
self-similarity are demonstrated in Figs. 3(c) and 3(d)
before the temperature resolution limit of about 50
p, K is reached. The smallest field at which we see

resolvable structure (64x @/@o= 0.15 or H = 30
mOe) corresponds to a length scale of about
[@o/H]ii2=26 p, m, or an area which includes about
100 elementary triangles. In comparison, structure ob-
served in the regular arrays was due to, at most,
groups of about 5 elementary cells. 3

In systems of integral dimension the exponents
governing thermodynamic properties [e.g. , the density
of states: W(E) —E(+2' 'l are well known and
depend on the Euclidean dimension d. It is tempting
to assume that similar relationships hold on the fractal
lattice with the substitution of the fraetal dimension,
D, for d. Alexander and Orbach'o have shown, howev-
er, that for such properties d must be replaced by yet
another anomalous dimension, the so-called fracton
dimensionality, d =D/(1+ —,

' 0), where 0 is the
anomalous diffusion exponent. 'o'6'7 For the planar
SG, D =ln3/ln2 and 0= (ln5/ln2) —2=0.322. Ram-
mal and Toulouse9 point out that in the limit of small
fields the phase boundary should obey a power law
T„—T,~H i(4 +). In the regular array, where 0
vanishes, one recovers the linear relationship between
6 T, and H. The small-field condition, roughly
H & $0/L2=5X 10 6 Oe, is far beyond our resolu-
tion. L is the size of the entire gasket. Using "nesting
property II" from Rammal and Toulouse, however,
we note that the eigenvalues of the nth-order gasket at
the fields H„=$0/(2X4"a) remain in the spectrum at
all higher orders. Specifically, the band-edge solutions
at these fields are of the form

b, T,(H„)=—T,~ —T, (H„)= H„2L„2 (3)

where L„=2"Lois the size of the nth-order gasket.
Noting that L„2=(ago/2H„)Lo2 it follows from (3)
that InhT, (n) = (1+8/2)lnH„+const. Thus, we ex-
pect the points b, T,($„)to fall on a single curve de-
fined by T„—T, H„+ 2 with 1+0/2=1.161.

In Fig. 4 we have plotted T„T,vs H on—loga-
rithmic axes, with arrows indicating the field values
where $/Po= —,', —,', +, , . . .. The H'+ei2 behavior is

represented by the solid line. A least-squares analysis
of the data gives (1+0/2)=1.17+0.02. Thus, we
determine the fracton dimensionality d = D/(1
+0/2) =1.35+0.02, consistent with the theoretical
value d = 1 365 '8

Before concluding we mention an unexplained
feature of our data. Above we have used the value
HO=15.0 Oe for the period corresponding to one flux
quantum per elementary triangle. This is the value of
the field separating adjacent minima in the phase
boundary and is consistent with the measured area of a
triangle, a =1.38 p. m2. Inspection of the data in Fig.
2, however, reveals that adjacent maxima in T, (H) are
separated by HO=13.0 Oe. This discrepancy in the
periodicity deserves further study (see Fig. 1).
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FIG. 4. The suppression of the superconducting transi-
tion temperature as a function of magnetic field, on loga-
rithmic axes. The arrows mark the field values correspond-

ing to 4/fp= ~, ~, +, t28, and, » . As discussed in the

text, the solid line through these points has a slope
1+0/2 = 1.17, consistent with the calculated value of 1.161.
The dashed line has a slope of 1.0 for reference.

In summary, we have made measurements of the
superconducting-normal phase boundary of a high-
order Sierpenski gasket constructed from
submicrometer-width Al wires. The phase boundary is
found to exhibit structure over an exceptionally wide
range of fields, satisfying, ~ (@/Po ( 5. Further, it

is shown to be self-similar over four orders of dilation
and is in good quantitative agreement with theory. Fi-
nally, the critical exponent for diffusion, 0 (and thus
the fracton dimensionality), has been experimentally
determined and is consistent with theoretical values.
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