
VOLUME 56, NUMaER 21 PHYSICAL REVIEW LETTERS 26 MAv 1986

Stimulated Raman Scattering in the Presence of Filamentation in Underdense Plasmas
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A model of stimulated Raman scattering from underdense plasmas in which the laser intensity
profile and plasma density have been corrupted by the filamentation instability is described. The
model accounts in a unified way for inhomogeneity in the density, for Landau damping, and for lo-
cal enhancements in light-wave intensities. In shallo~ filaments the concentration of the light gives
rise to modest increases in growth. On the other hand, for deeper filaments the inhomogeneity and
Landau damping dominate to suppress the instability. In addition, backscatter is enhanced relative
to sidescat ter.

PACS numbers: 52.50.Jm, 52.25.Rv, 52.35.py

The importance of stimulated Raman scattering
(SRS) from the extensive underdense coronas charac-
teristic of contemporary laser fusion experiments has
been recognized for some time. ' While the observa-
tions confirm some of the characteristics of Raman
emission there are features which do not readily con-
form to the predictions of the standard treatment of
the instability in a linear density profile. If we are to
understand the details of the various Raman observa-
tions it is important to model the plasma more realisti-
cally and in particular to take account of the possible
effects of other instabilities taking place concurrently. 2

In this Letter we focus attention on ways in which SRS
may be affected by filamentation. Filamentary struc-
tures are present in many target plasmas, these struc-
tures being localized on a spatial scale finer than that
associated with nonuniformities in the incident beam. 3

There is some indirect evidence that filamentation can
affect the Raman emission. 4 We would expect on the
one hand that the enhanced intensity of radiation
within the filament might lead to correspondingly
enhanced Raman growth while, on the other, the den-
sity modulation resulting from filamentation is likely
to restrict the development of the Raman instability
through its effect on the plasma wave, since phase
matching is only satisfied locally. Experiments in
which filamentation has been observed provide some
information about the width and, less certainly, the
length of filaments but none about details such as
depth or shape. In this work we adopt a model which
is readily amenable to analysis and yet able to account
fully for both the plasma inhomogeneity (without
recourse to assumptions of weak inhomogeneity, to a
local approximation, or to WKB analysis) and the
kinetics (Landau damping). In the main, most ap-
proaches either adopt a fluid theory for weakly inho-
mogeneous plasma with an ad hoc Landau damping, or
use kinetic theory with a local approximation to which
a weak inhomogeneity may be added phenomenologi-
cally. We circumvent these limitations by assuming a
sinusoidal density profile which allows the usual dif-
ferential equations (fluid or Vlasov) describing SRS to

(a —n2)E„= q(H„E„ i+8„+iE„+i), (2)

where k„=k+2nK, K=Ky, n„=k„/K, and E„
= E(k„) is the electric field of the wave in question.
For light waves a = (tu2 —to~~)/K2c2, q = ed~2/2K2c2,
8„=1,and to~ is the plasma frequency corresponding
to the mean density np For plasma w. aves a=(to2
—to~2)/3K2VT2, q =~/6K28. 2D, and H„=K„K„ i is a
geometric factor; VT and XD represent the electron

be transformed to a difference-equation representation
in wave-number space that is nonhomogeneous or
homogeneous depending on the boundary conditions
chosen. In this work we have chosen periodic boun-
dary conditions giving a homogeneous equation. A
finite-order difference equation results which may be
routinely solved.

The filament is modeled by an electron plasma
whose zero-order electron density is

np(y) = np(1+ e cos2Ky)

and so is assumed to have a slab geometry with a
wavelength A. =m/K and prescribed depth 2e relative
to the mean background density np. The laser light, of
frequency asap and vacuum wavelength Xp=2m/kp, is
incident along the filament in the x direction. The
Vlasov equation with the ponderomotive force of the
beating light waves included has been adapted to
describe driven plasma waves in the presence of the
profile given by (1). The light waves are adequately
treated by fluid theory, incorporating (1).

The propagation of plasma waves parallel to a
sinusoidal density gradient has been considered by
others, the propagation characteristics being described
by the Mathieu equation. s The propagation of light
waves polarized perpendicular to the density gradient
(s polarized) is similarly described. Plasma waves
propagating obliquely to the density gradient satisfy a
closely related equation. We assume that incident and
scattered waves are both s polarized. The propagation
of all three waves may then be described in wave-
number space by the difference equation
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thermal velocity and the Debye length, respectively.
Treating the plasma waves kinetically requires the re-
placement of (co2 —co~~ —3 k2 VT2)/co~~ by —[1+1/
X(k, co) ] and X is the usual electron susceptibility for a
homogeneous Maxwellian plasma.

For a given k, the periodic solutions of (2) yield an
infinite but discrete set of eigenvalues a =a~ (N=Q,
1, 2, . . .). The crucial quantity determining the na-
ture of the solution is the coupling parameter q. When

q is small, the wave can adjust its wave number to
compensate for changes in density and hence pro-
pagates at every density present, i.e., between
&2+ =su~2(1+a). When q is large this compensation is
no longer possible and the wave is evanescent at
higher densities. The wave then becomes trapped
within the filament. Just what large or small q means
must be seen in relation to the particular eigenstate
aiv(q). Higher N corresponding to higher frequency
requires larger values of q to trap such waves within
the filament. In addition, coupling into shorter-
wavelength modes implied by (2) gives rise to
enhanced Landau damping which can be the dominant
effect for sufficiently deep filaments.

For light waves, g, =2m(no/n, )(X/1i.o)2 where n, is
the critical density for the laser light. The parameters
used throughout this work are no=0. 1n„VT= 0.035c,
h. =10)i.o, and F0=0.01c; uo is the quiver velocity of
electrons in the laser electric field T. hen g, =20m
which can easily be greater than unity implying that
the first few eigenstates are trapped within the fila-
ment, the remainder being free to propagate in what,
for them, is an everywhere underdense plasma. To il-

lustrate this, Fig. 1(a) shows the intensity variation
across a filament when & =0.15 for the laser driver or
backscattered light (both correspond to an N =0 state
as given by the dashed curve) and sidescattered light
(corresponding to an N = 6 state as given by the solid
curve). The figure shows the "filament, " the concen-
trated intensity profile of the laser light consistent with
the density channel (1), which is used as the driver in
the SRS equations. Backscattered light similarly
suffers filamentation while sidescattered barely "sees"
the density variation.

Plasma waves, on the other hand, scale to much
shorter lengths and therefore have a coupling parame-
ter

q„= (c'/3 VT)q,

=344m(no/n, )(&/A. ) [(1 keV)/T].
This can easily be very large implying strong localiza-
tion of plasma-wave energy at specific points within
the filament. Propagation anywhere requires ~ ) ru

the minimum plasma frequency, yet Landau damping
implies an upper limit to the frequency, ru ( co+.
Within this range a finite number of eigenstates may
be supported, the number being approximately
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FIG. 1. Profiles of electric field and potential (normalized
to homogeneous values) across a filament for light wave and
plasma waves when e = 0.15. (a) Incident and backscattered
light, N=0 (dashed line); sidescattered light, N=6 (solid
line). (b) Plasma-wave eigenstates N = 0 (short-dashed
line), N=4 (long-dashed line), or N =13 (solid line).
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Q(q/4). As the filament or cavity deepens succes-
sively more plasma waves may be excited. 6 Figure
1(b) displays the intensity profiles for three of the pos-
sible fourteen plasma-wave states supported by a cavi-
ty for which ~=0.15. The lowest-frequency mode
~=co (N=Q) is that localized near the density
minimum while the highest is co-—co+ (N = 13) local-
ized near the density maximum. One intermediate
state, N=4, is also shown localized midway up the fi-
lament wall.

Of course, in an inhomogeneous plasma three-wave
interactions may occur at any of the densities present
(up to n, /4). In the context of the present periodic
system and the consequent discrete set of eigenstates
we can have resonant three-wave interactions between
a whole series of pairings of light-wave and plasma-
wave eigenstates. in principle, then, we need to solve
three coupled sets of equations of the form (2). In
practice, we may simplify the problem by observing
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that since q„&) q, we may assume, to lowest order,
that the light-wave intensities are uniform across the
filament. Figure 2 illustrates the effect of the inhomo-
geneity on the plasma wave alone. When &=0, the
homogeneous growth rate has a maximum vaIue

go = kt ore~/2(0ico, ) ti and bandwidth yo. Reduction in
growth is rapid until the bandwidth associated with the
inhomogeneity &0'~ —yo', subsequently it is rather
slower but such that the bandwidth for growth is deter-
mined by ~co~ rather than yo. This is akin to using
bandwidth in the incident laser to reduce growth. A
cold-plasma theory shows that oscillations exist only at
density maximum, co=co+, and density minimum,
co=cd, in other words only where density gradients
are zero. These dominate as Fig. 2 shows clearly (co+
on the left, co on the right) with growth rates de-
duced analytically to be y+ = —,

' J3(~~~2 /go~+) '~
yo

when eoi~ ) yo. These expressions reproduce the nu-
merical values to good accuracy. Finite temperature
allows states at intermediate frequencies as clearly
seen when e=0.15 in Fig. 2. The frequency separa-
tion between peaks can also be deduced analytically to
be Sco —2KVTQ(6e). Each peak in Fig. 2 is associat-
ed with a given eigenstate, N, which is localized at a
specific point within the filament or cavity [cf. Fig.
I(b)].

Given this strong localization of the plasma-wave
energy it is straightforward to predict just how the
nonuniform light-wave intensity profiles will modify
Fig. 2. If we include in the first instance the effects of
the filament on the scattered wave alone, Fig. 1(a)

shows that backscattered light ( W = 0) is concentrated
around the filament bottom. The numerical results
show that the resonance at ~ is enhanced while that
at co+ is diminished by just those factors which would
be anticipated from Fig. 1(a). Growth at cu still
shows a reduction with increasing e, albeit now rather
weak, while that at co+ is all but suppressed, there be-
ing little scattered light-wave energy near the density
maximum where this resonance occurs.

Finally, including the nonuniform laser intensity
profile produces Fig. 3; here all three interacting
modes are correctly treated for the profile (1). Figure
3(a) shows the backscatter growth rates showing a fur-
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FIG. 2. The SRS growth rate for backscatter as a function
of the scattered light wave number assuming light ~aves of
uniform intensity across the filament.
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FIG. 3. The SRS growth rate for (a) backscatter and (1)
sidescatter as a function of the scattered light wave number
including the effects of filamentation on all ~aves.
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ther expected strong bias towards the resonance at the
filament bottom. For deeper filaments the net growth
shows an increase over homogeneous values which
continues until the minimum density reaches a value
such that Landau damping becomes strong kA. n locally
large) after which it quickly decreases with e. Finally a

stage is reached where Landau damping is so strong
that around the density minimum SRS degenerates
into stimulated Compton scattering and the maximally
growing states are those at higher densities (i.e., local-
ized up the filament wall) where Landau damping is
relatively weaker and SRS still occurs. Ultimately, the
regions of laser-light concentration and plamsa-wave
propagation become mutually exclusive with only
stimulated Compton scattering remaining.

Growth for sidescatter shows essentially the same
features seen in backscatter with one exception. The
difference is illustrated in Fig. 1(a) showing that side-
scattered light (%=6) is barely affected by the fila-

mented profile. Relative to the backscatter case, this
means that the enhancement of the resonance at to is
correspondingly weaker as is clear from Fig. 3(b). One
effect of filamentation, which might potentially signal
its presence, is to make SRS backscatter relatively
much stronger than sidescatter even when the plasma
is sufficiently broad to allow significant lateral gain. ~

Isolated filaments would give identical results to
those discussed here for the assumed periodic array of
filaments at least for backscatter where strong trapping
prevents transmission of either plasma-wave or light-
wave energy from one filament to the next. However,
any density variation along the filament imposes a
phase-mismatching length requirement as in the stand-
ard inhomogeneous theory. By contrast, sidescattered
light which emanates from densities well away from
the quarter-critical density is little affected, apart from
needing enough filaments to be present to achieve
lateral gain (thus imposing a condition on the lateral

extent of the periodic plasma). Sidescattered light
from densities approaching quarter critical is strongly
trapped within a single filament. This is a problem we
will return to elsewhere; for present purposes suffice it
to say that complex interference effects occur and that
absolute instability can arise over a wider range of den-
sitics.

In summary, this work has shown scattering to be
strongly confined to the bottom of filaments. In shal-
low filaments modest increases in growth result, due
mainly to the locally enhanced laser intensity there.
The increase is less than might be anticipated since the
inhomogeneity reduces growth, through bandwidth ef-
fects, by its action on the plasma-wave propagation.
For deeper filaments, Landau damping at the lower
densities present plays the dominant role strongly
suppressing growth. Sidescatter exhibits no enhance-
ment over its homogeneous value and is decreased rel-
ative to backscatter.
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