
VoLUMa 56, NUMBER 21 PHYSICAL REVIEW LETTERS

Statistical Mechanics of the Sine-Gordon Equation
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%e give two fundamental methods for evaluation of classical free energies of all the integrable
models admitting soliton solutions; the sine-Gordon equation is one example. Periodic boundary
conditions impose integral equations for allowed phonon and soliton momenta. From these, gen-
eralized Bethe-Ansatz and functional-integration methods using action-angle variables folio~.
Results for free energies coincide, and coincide with those that we find by transfer-integral
methods. Extension to the quantum case, and quantum Bethe Ansatz, on the lines to be reported
elsewhere for the sinh-Gordon equation, is indicated.

PACS numbers: 05.30.-d, 05.20.—y, 11.10.Lm

The quantum and classical sine-Gordon (s-6) equa-
tions are of fundamental importance: The classical
case is integrable by the inverse (spectral-transform,
ST) method, ' and the normally ordered quantum s-G
equation is solved for eigenspectra and eigenstates by
the Bethe Ansatz (BA)z and quantum-inverse method
(QIM).3 The statistical mechanics of either case is
equally important: The quantum statistical mechanics
includes quantum mechanics as a special case; Bose-
Fermi equivalence is superbly illustrated'z in different
ways4 in these quantum cases. The classical case has
fundamental importance as a test of calculation meth-
ods, 4 and both the classical and quantum statistical
mechanics (SM) have application to experiment. 5

In this Letter we draw together the different ap-
proaches to the quantum and classical SM of the s-6
equation. For simplicity of report we focus primarily
on the classical SM. Reference to related work4 on the
quantum and classical SM of the sinh-Gordon (sinh-

I

H[p ] = XtE(p, ) + X/E(p~) + X/Et, (8t,p() +J to(k

(I~i «Nk', I ~ j~Nk, 1~ i~Nt, ), where to(k
I

(rn2+ k2)1/2 E(p) —(~2+F2)1/2 and E (0 p)
—= (4M sinz&+ pz)' 2. The phase spaces are known. 6 9

The mass is M = 8myo '.
The relative simplicity of H[p] suggests that the

coordinates (3) are the ones to use in evaluation of
both the partition function Z and the correlation func-
tions. In the classical limit Z is the functional integral

Z = JI&II 9'&exp( —pH[p]), (5)

with p ' =—T the temperature. Instead, as also in Ref.
4, the idea is to evaluate Z in the form

Z = 8' iM, exp( PH [p l)—(6)

where W/t, is a measure to be determined. It is the

H =—yo '„1dx ( —,Ptz+ —,
'

phd+ mz(1 —cos@) ), (2)

Poisson bracket (11,$) =5(x —x') (and II = yo '$, ),
and dimensionless coupling constant yo, becoming the
linear Klein-Gordon (K-6) equation for yo 0 in
both the classical6 and quantum7 cases. The classical
integrability means there are action-angle variables6 8

[pt 7i pj 'V/ pl ll 4yo '0t ~'t, ~(k).0(k) ]

with obvious Poisson brackets, such that H can be ex-
pressed in action variables alone6 9 as

)P(k) dk

quantum form of (6) which relates directly to the
methods of BA and QIM, for the coordinates (3) are
expressible in terms of the spectral data of the classical
ST, '~ 6 and these data relate in turn to the k-space
formulation of the BA method2 and the operators and
operator algebra of the QIM. 3

Reference 4 calculates F= —p 'lnZ for a large
class of quantum integrable models in terms of spectral
data. Here we extend that work to include all cases ad-
mitting soliton solutions and focus on the classical s-6
equation as one important physical example.

The essence of the problem (and cf. Ref. 4) is to im-
pose periodic boundary conditions, period L (~, so
that a proper finite-density thermodynamic limit can
be taken for L ~. We give three methods. The

6) equation indicates the interrelation of the classical
and quantum calculations.

The classical s-6 equation is

—$„=m2 sin@,

where Q = Bzp/Bxz, etc. , and m is a mass (/t = c = 1).
It is Hamiltonian and completely (Liouville'6) inte-
grable, with (H—= H[$])
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first is a generalized form of the BA, taken here in
classical form~: In effect this method uses the coordi-
nates (3)9 and no Ansatz whatsoever .The second
evaluates (6) by use of the coordinates (3). And the
third uses the familiar classical transfer-integral
method (TIM) on (5). The resultant expressions for
FL ', the free energy per unit length, totally
coincide —establishing the two new methods in their
classical context and, by implication, bringing together
quantum BA, 2 the various generalizations of it that we

shall report, '0 the QIM, and the quantum
functional-integration method which generalizes (6).4

The analysis of (5) by the TIM for the s-G equation

is well studied6 " and ad hoc methods for it are also re-
ported, "'2 so that we shall not give details here. In
both of the two new methods that we report, the

t

"classical BA" and the method based on (6), our

starting point is a generalization of the periodicity con-
dition given in a simpler form for the no-soliton case
in Ref. 4. First we replace H[p] by H[p] =—H where

H= X,E(p;) + XiE(pi)+ X„~„P„, (7)

with cu„—= (m2+ k„)'i2, and, conveniently, ——,
'

N„„~ n ~ —,
'

N» and Nk+Nk+ (N»+1) =N+1 (N» is

even, for convenience): P„2mL 'P(k„), while

(8), which follows, shows that p;,p, ,P (k„)2n L
p, ,P&,P(k)dkas L ~. Evidently (7) extends the

oscillator contributions, which alone survive for the
sinh-G equation, to include additional kink and an-
tikink contributions. '3 Work on a lattice form of the
s-G equation under periodic boundary conditions9
shows that (7) is correct to O(L ') for a lattice with
N + 1 lattice points, spacing a, in a period L
= (N+ 1)a. Floquet theory4 6 then shows in this case
that to O(L-')

Lk„=Lk„—x b(k„,k )P +x,hk(k„, p;. )+X.bk(k„,pj),
(8)

the classical kink-kink coordinate phase shift in

y variables'6 and also derives from an S-matrix~ 015

pite the strictly classical nature of the analysis
ed here it is still important" 6 to distinguish
' shifts bb(k, k') and "Fermi" shifts hf(k, k')

related by~ 6 db, &/dk = dbf//dk —2n 8 (k —k'). Evi-
dently, (9a) is Bose; but (9b) will here be interpreted
as a Fermi shift2 4 in the sense that b, k is the continu-
ous branch of the tan ' function such that Ak —27r

for parameter k —~, and hk 0 for k +~.
The reason for interpretation of the kinks (antikinks)
as fermions is that the expressions (4) [i.e., (7)] for
HP[] assume that all kinks and antikinks together
must necessarily have distinct momenta p;,p, : This is
a classical property equivalent to the assumption that
the spectral datum a (() has simple zeros. '6 s

Transformation to variables (3) is canonical under this
condition. s In this sense the kinks (antikinks) are
classical fermions!

From Eqs. (5) and (6) it is easy to derive integral
equations for the corresponding shifted energies which
minimize the free energy FL '= (E /3 'S)L-
The procedure is a generalization of that reported in
Ref. 4. In rapidities these prove to be

(9a)b (k,k') = yam /4[kcu(k') —k'(u(k)],

b k(k p) = —2 tan '
I m/y[k —~co(k) ] J, (9b)

with b, k(kp) = bk(k p), and hkk(pp') = bkk(pp')
= 5kk- = b,«[—= b,«(n, n') ]. It is convenient to work
first of all in rapidities n, P, such that p = Msinhn,
k = m sinhP, ao(k) = m coshP, etc. Later we use
p = M~y, y=—(1 —v2) 'i2. In rapidities,

t) &, 8
l

cosh(n —n') —1nn = ln
yo cosh(n —n') + 1

' (10)

and so on for Akk, etc. Evidently b, k (5k-) is the kink
(antikink) phonon phase shift6'4 and, e.g. , (9a) is the
classical limit (yo 0) of the two-body S-matrix
phase shift for the quantum s-G equation. 3 4'' Like-
wise the kink (antikink) momenta are "back" phase
shifted by the phonons (terms in P ). The derivative

Lpk Lpk Xppg~k(km pk)Pm Xj~kk(pk pi) $/il'kk(P k pJ')

and a similar expression for Lp& ( ——, N» ~ m, n
~ —,'N», etc.). The g' omits the index on the left- (1()) is
hand sides and Lk„=2m n Oth. er terms O(l) are rapidit
omitted since they do not contribute as L ~. shift fo

Solely from the analytical properties of the transmis- Des
sion coefficient a(() of the ST we then show that [to sketch
O(L-') ]"' "Bose'

1 " dh PF.(x')—e(x) =co(x) + !n[Pe(x')]dx'+ e i'~'" 'dx',
2mP - —~ dx 2m "-~ dx

(1la)

(lib)

with, now, co(x) =—m coshx and E(x) =—Mcoshx, while, in rapidities, 5 —= A(x —x'), etc. In the calculations for
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the entropy S the kinks and antikinks are treated separately as Maxwell-Boltzmann partic]es —explaining the
'"' forms. »nc«he energies and relevant phase shifts are the same for both kinks and antikinks it is un-

necessary to distinguish the two contributions further. Still, it is also possible to carry through the ana]ysis as
though both of these particles are fermions and then, as expected, 'o 2e t'~1" 1 2]n(1+ e t'E1"1). Similar]y the
phonons are most easily treated as bosons, so that, s in classical limit, ]n(1 —e &'"') —]n[pe(x)]; but they can
b«ermions too, or classical (Maxwell-Boltzmann) particles. If all soliton contributions are dropped, (1la) is ex-
actly the boson integral equation in classical limit found for the sinh-G equation except 5 —5 (yo —yo) and

rapidities are now used.
The free energy is found to be

F 1 o)(x)in[Pe(x) ]dx-
L 2mP" —~

The coupled system (11) is solved
+ Ft2'+. . .) + Fxo, where

' 1/2

F"'= —P-'m
ter

E(x)e ~~" dx. (12)2nP" -~
by iteration and the result substituted in (12) to yield F/L =(F1'1

'[ 1 —
s t i2s t 1024 " ] i m [ 4 ' + s ' + i6 "+ iss ' + (13a)

t—= (MP) ', and FKG=i8 'a '(]nPa '+ —,
' ma) for a (classical) lattice of spacing a exactly as for the sinh-G

equation. s The result for FL ' is actually the analytical continuation in yo from the classical free energy of the
sinh-G equation as —

yo yo. This is most easily seen by using the TIM on (5), with Hamiltonian (2), and per-
forming a matched asymptotic expansion analysis —as we have done. " For Ft'~ the result of the TIM is exactly
(13a), while both of (11) with (12) and the TIM independently show that

2
F(2) 8mMe 2lt]n 4C 5tln4C+1 t 13]n4C+2 +

n t 4 t 32 t
(13b)

i

Z= ZxoZtt exp 2L(2m ) 'J1 dp exp[ pE(p)+o. i+o.2+o.3+—. . .], (15)

where —p InZts is ultimately identified as the "breather" (phonon) series in (13a). The "dressings" o; on the

and agree at F 3', and apparently on all F s~ (q =4, . . .) which are O(e s '); Cis Euler's constant. Note that the
power series in (13a) has been thought of 7 "'2'7 as the contribution of the classical s-G breather solutions. In-
stead, the line of argument through (7) and (8) interprets this as large-amplitude phonon contributions.

These results demonstrate the power of the "generalized BA method" reported in this Letter: Plainly it applies
to all of the classical integrable models in 1+1 dimensions. But we have also derived's the coupled systems (11)
with (12) as the classical limit of the published forms'7 of the quantum BA for the s-G equation; and (compare
Ref. 4 for the sinh-G equation) these quantum forms can themselves be found from the condition (8) (and ap-
parently can be in Bose, Fermi, or mixed Bose-Fermi forms). Chen, Johnson, and Fowler'9 20 report a derivation
of (13) from quantum BA: They obtain integral equations in a form different from but equivalent to our (11) and
(12)—iterating these to the result (13).

We now show how the same periodicity conditions (8) imposed on the functional integral (6) lead to exactly the
same (classical) results. We have shown already6 that the proper measure &iM, in the classical limit is

&p, = Z„X(N„!N~!) 'ff,. (2 ) 'dp; dq;Q, . (2 ) 'dp, dq, li {.. . }, (14)

where 0- Nk, Nk (~, lim{. . . I =11m~ {g„(2n) dP„dQ„jZxG(N) } with, after relabeling against (7),
N' N„—N„-» n»—1, and ZxG(N) is the partition function for N linear K-G modes [ZxG=]immit ZKG(N)];
01(k) is given by (4). We then use (7) for H[p) in (6) and impose (8). This means that H [p] is not separable;
and (compare Ref. 4) formal iteration of (8) leads exactly to the integral equations (11) with FL given by (12).
Apparently the quantum case goes through similarly, establishing the map from the classical action and the classi-
cal spectral data3 6 s to the quantum results. We give details elsewhere. '0 In using the measure (14) it is crucial to
keep the phase-shift terms of (8) which are O(L ') on k„,A. The lattice analysis9 then shows that (11) with (12)
are exact in thermodynamic limit.

However, the expansions (13) are only asymptotic: They are found by the functional-integration method by
iterating (8) and carrying out the "phonon" integrals followed by the continuum limit N ~ at finite density
NI '. This ~ay ~e arrive at
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kink (antikink) energies E(p) = (~ +p ) prove to
be o

&
= ln(m p }and a 2

= 1n(7 + 1) —v in', while

+ —in' —,(in7 )
„27-1 1 —u 2

y+ j.

where 7 —= 7 (1+~). These dressings yield the remain-
ing (kink + antikink) contributions to the free energy
(13). We have thus given a rigorous demonstration of
a "dressing method" within the functional-integration
method, in result rather like the ad hoc so-called
"ideal gas phenomenology" for the classical s-6 equa-
tion"'2 which was able to produce expressions not too
dissimilar from (16). This "dressing method" also
justifies first work on the quantum s-6 equation. 2'

To conclude, the two methods of calculation based
on (8), "generalized BA" and "functional integration
on (6)" (classical or quantum), appear quite generally
to lead to the same systems of coupled integral equa-
tions and hence the same results —which include the
quantum eigenspectra at P '=0. Thus both of the
methods, here described for the classical s-6 equation,
apply to all of the quantum and classically integrable
systems in 1+1 dimensions with or without soliton
solutions. Note that action-angle variables are avail-
able for all of these systems'6 s and periodicity condi-
tions like (8) can be deduced in each case.
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