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%e propose a criterion that tests the existence of isolated quarks in QCD.
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A long-standing open problem in QCD is the prob-
lem of quark confinement. In the limit of infinitely
heavy (static) quarks, several confinement criteria
have been proposed, the best known being that of Wil-
son. ' All of these criteria fail, however, in the pres-
ence of light (dynamical) quarks since vacuum fluctua-
tions of quark-antiquark pairs screen the confining
forces.

In experiments, quark confmement manifests itself
in the fragmentation of sufficiently widely separated
quark-antiquark pairs into ordinary hadrons. On the
other hand, if free quarks are to exist it should be pos-
sible to separate a quark-antiquark pair. The free
quark is then obtained by sending the antiquark to in-

finity. One is therefore led to investigate theoretically
the sequence of "dipole" states

e = Xy,,.(x)y,,,(y)U.,(Z )fI, (1)
],a,P

where iltt (x) are the quark fields at the point x of
space with color index a and Dirac and flavor index i,
U( g~) is the path-ordered integral of the gauge field
over the path g~,

the result of a translation of U( K~) by n steps into
Euclidean time:

U(n)( g ) TnU(~ ) T-n

Here T is the transfer matrix. The energy of the se-
quence of states

C'"'= Xy, .(x)j,,(y) U.'t",'(~ )II (4)
l, o,P

stays bounded as y goes to infinity if we take n propor-
tional to ~x —y~. (This is a consequence of the perim-
eter law for the Wilson loop which is always true if the
gauge fields are coupled to matter fields carrying the
fundamental charge; see, e.g. , Seilers. ) For the sake
of simplicity we shall take x —y along a lattice axis and
choose n= —,

'
~x —y~. The Ansatz (4) mimics the at-

tempt to separate a quark-antiquark pair with a given
energy.

If quark fragmentation occurs as y ~, the transi-
tion probability of 4~~ "l into hadronic states (including
the vacuum) should go to l. In particular, since all

hadronic states are local excitations of the vacuum,
one expects

U(C'~) =Pexp i„& A, i(n, a &"') i'
lim

2
= const& 0. (5)

and II is the vacuum.
The energy of the state 4~ diverges as ~x —

y~ tends
to infinity. In previous work we discussed a possi-
ble way out of this difficulty. Denote by Ut"l(V~)

If, on the other hand, the limit (5) is zero, this is an
indication that the sequence of dipole states becomes
orthogonal to all hadronic states and therefore approxi-
mates an isolated quark.

In order to compute the ratio in Eq. (5) we express
the matrix elements in terms of Euclidean expectation
values of gauge-invariant strings and loops. Denote by

(euclidean) time

FIG. 1. The path g~. FIG. 2. The numerator of Eq. (5) in graphical terms.
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FIG. 3. The denominator of Eq. (5) in graphical terms. FIG. 4. The order parameter in graphical terms.

a rectangular path in Euclidean space-time with
end points x and y in the time-zero hyperplane (Fig.
1). The numerator of (5) is given in graphical terms
by Fig. 2 and the denominator is given by Fig. 3. In
Fig. 3 8 denotes "reflection through the time-zero hy-
per plane. "

In the continuum theory, the denominator of Eq.
(5) has to be regularized because of the singularity of
products of quark fields at coinciding points. A simple
way of doing this is to replace it by the expectation
value of the Euclidean Wilson loop C~ 84~. Thus
the parameter to be tested can be represented in
graphical terms by Fig. 4.2 A regularization of the
corners of the path &~ is probably not necessary since
the associated divergences in the numerator and
denominator should cancel.

We would like to point out that our parameter p
tests in some sense the origin of the perimeter
behavior of the Wilson loop in the presence of dynam-
ical quarks. If this behavior is caused by fluctuations
of the matter fields, then both the numerator and the
denominator in Fig. 4 should decrease exponentially at
the same rate. As a result pe0, which means confine-
ment. If, however, the perimeter behavior is partially
due to fluctuations of the gauge field, the denominator
is expected to decay more slowly. Then p vanishes,
which indicates deconfinement.

The picture described above has emerged from a
general analysis of the particle structure in gauge
theories, 6 and has been confirmed both analytically3
and numerically4 on the example of the Z2 Higgs
theory. In the Z2 model there exists both a confining
and a deconfining phase, and p shows the expected
behavior.

As an aside we mention that our parameter looks
similar to a parameter proposed by Bricmont and
Frohlich. 7 However, the information contained in the
latter work is different: The Bricmont-Frohlich param-
eter is not sensitive to the presence of free quarks; it
rather tests the existence of bound states of a dynami-
cal and a static quark. 3 Since the existence of bound
states does not imply the absence of isolated quarks in
the scattering states, the Bricmont-Frohlich criterion is
not directly relevant to the confinement problem.

For the application of our confinement criterion it is
important to control the behavior of the parameter p
under renormalization-group transformations. Let

p =p(g) denote the dependence of p on the coupling
constant g in massless QCD on a lattice. By imposition
of a renormalization condition the lattice spacing a is
fixed as a function of g. The parameter p in Fig. 4
should behave like a gauge-invariant two-point func-
tion W2(r, g) of the fields alt and itt (r is the distance
between x and y on the lattice) at a physical distance
ra. The asymptotic behavior of W2(r, g) for small dis-
tances ra can be determined from perturbation theory.
The continuum value pt of our order parameter is ob-
tained by taking the limit

Pc= llm
( )

p(g) (6)g-0 8'2 r,g

The parameter p, could be determined in a Monte
Carlo simulation by computation of p(g) and use of
perturbative results for the renormalization-group
equation and for W2(r, g). At a later stage the accura-
cy of the simulation could be improved to determine
the scaling relations and the short-distance behavior of
W2(r, g) directly from the simulation.

The parameter p, should be directly related to mea-
sured quantities in the quark fragmentation process. It
would be very interesting to isolate such quantities,
but this requires a more detailed study of the fragmen-
tation process on the lattice.
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