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Dynamic Transition in a Hierarchical Ising System
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A one-dimensional kinetic Ising model, with hierarchical couplings, is solved. %e find algebraic
relaxation of the magnetization, with a temperature-dependent exponent, and breakdown of
dynamic scaling. The nonlinear relaxation time diverges with the system size below a dynamic tran-
sition temperature. Possible relevance to dilute Ising systems at percolation is discussed.
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One of the most important factors which determine
the time relaxation of random systems (amorphous or
glassy systems, spin-glasses, dilute alloys, etc.) is the
existence of a very wide range of characteristic time
scales. '2 Such hierarchies of time scales also arise in
molecular diffusion on complex macromolecule s,3

computing structures, 4 etc. This motivated several re-
cent studies of random walks on systems with a
hierarchical set of hopping rates (or barrier
heights). ' 'o These models exhibit a very interesting
sharp dynamic transition: If the ratio between con-
secutive hopping rates in the hierarchy is R then the
diffusion is "normal" for R, (R, and "anomalous"
for 0 (R (R„where the diffusion coefficient D (or
the conductivity) vanishes.

Random walks of diffusing domain walls are be-
lieved'z to control the low-temperature dynamics'
of Ising spin systems whose equilibrium magnetization
is zero at finite temperatures. This is the case on some
ramified fractal structures, such as the incipient infin-
ite cluster at the percolation threshold's'6 or model
fractals (e.g. , the Sierpinski gasket's). In such sys-
tems, the maximum energy barrier that a wall must
cross increases with their size, L.

This led several groups' ' to predict that the relax-
ation time r diverges as r —I.' for L &(( and
~ —P for L )& g, where g is the static correlation
length (g ~ as T 0), and z(T) —1/T. This
represents a breakdown of conventional dynamic scal-
ing, ' for which the dynamic exponent z must be tem-
perature independent.

In fact, the fractal geometry implies a whole hierar-

chy of energy barriers, and hence of hopping rates
which have temperature-dependent ratios, of the form
lnR —1/T. In view of the above quoted results on
hierarchical models, one might therefore expect a
similar dynamical transition, below which some ap-
propriately defined diffusion coefficient vanishes.
However, as the temperature is raised, one is no
longer a priori justified in using the single-domain-wall
diffusion argument. Instead, one should consider the
full master equation for the spin distribution function
P({s;);t).i3'~ '9 Surprisingly, recent exact treatments
of this full equation claimed to recover dynamic scal-
ing at all temperatures. Dynamic scaling was also
used in the analysis of the pioneering experiments on
dilute magnets, 2' and in other recent publications. 22

This Letter aims at resolving this controversy, and to
find whether a sharp dynamic transition6 also occurs
for Ising spin dynamics.

To this end we consider a simple one-dimensional
kinetic Ising model, which contains the hierarchical
features mentioned above. We solve the full Glauber
equation, and find the dependence of the system's
magnetization M on time t, on L, and on T. Although
the model is simple, the two above-mentioned ap-
proaches do yield different results for it; our solution
resolves the controversy, in a manner that may be
relevant for more complex situations as we11.

For L ~ and long times, we find algebraic relaxa-
tion, M —t "tT~ with x(T) —T. This implies that
the nonlinear relaxation time, r„i=fM(t)dt, is infin-
ite for T ( T„where x(T, ) =1. This novel dynamic
transition at T, resembles that of the random-walk
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problem, in which D ' ~. For finite L we find

( T)L —1+1/x(T) T + T (la)

(lb)

(lc)

for all L. Our results imply breakdown of dynamic seal
lng.

We consider a ferromagnetic Ising chain of length L,
with nearest-neighbor couplings assigned in a hierarch-
ical manner (see Fig. 1). Odd bonds have strength
Kt= Jt/kT. Couplings of strength K2+mK3 are as-
signed, in the hierarchical manner indicated, to frac-
tions 2 ~ + of bonds. %e use a renormalization-
group procedure, s decimating the spins indicated by tT

in Fig. 1. The spins p, that survive the decimation
form a linear chain with the same hierarchical struc-
ture. If we set t/;=coshK; and v;=tanhK;, the static
recursion relations are 3

vt = vtv2, K2 = K2+K3, K3 ——K3.1 2

g is determined by the (weakest) Kt bonds only:

g —e ' for K2 & K, » 1. The master equation for
P( {s};t)= P( {a. }, {p, };l) takes the form'3

—P({sj;r) = —X(1—p;) W;(s;)P({s};r), (3)
d

I

K2+2Kp

Kp
K]
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FIG. 1. Part of an infinite Ising chain. The vertical lines
indicate the strength of the nearest-neighbor, hierarchically
assigned bonds K~, Kq, It q+ m@3 between spins (a. and p, ).
Decimation of {o. j yields a chain whose couplings are also
hierarchical.

where p; is a flip operator for spin i,

pif (s 1 s 2i ~ si ~ sL )

(stis2i ~ ~ ~ i sii ~ ~ ~ i sL ) ~

We chose transition rates W(s; —s;) = W, (s;)
given by

W, (s, )

exp{ s [K(& l. l )s + K(Ii + t) ] je
—Iair '

I

~he~e ~&"= K' "'—E"'+"E"'+"denotes the
coupling of s, to s;+ t. Our W(s;) satisfies detailed
balance and is chosen so that the rate associated with

moving a domain wall a single step in a direction that
lowers the energy is set equal to unity.

Following standard procedure, 0 we represent
P({s};t) as P, ({sj)f({sj;r), where P, ({sj)
=exp[ —4 ({sj)]/Z (Z is the partition sum). We
take @({s };r) = I + h ( r) $; s, , keeping only the
slowest operator that forms an invariant subspace. 2o

The manner in which /t (r) scales under decimation
yields information about scaling of the slowest mode
of the system. After decimation, the master equation
for P'( {p, };t')= Trl lP ( {oj, {p,

.};t) becomes

, P'({p, j;i')
di'

= —g(1 —p. , ) W. ', (p, , )P'( {p, j;t'). (4)

Again P'=P,'g', P,' and W' are expressed in terms of
the renormalized static Hamiltonian (2) precisely as
above, and $' is linear in X;p,;. 3 Time gets rescaled,
t'= r/A, where

vt(1+ v2) t/t /c,
' —/c,A= 1+ e

1 + U]V2 El~
(5)

In order to highlight the manner in which our treat-
ment deviates, from this point on, from standard
dynamic renormalization-group procedures, 2o we first
restate the basic premises of the latter approaches. To
calculate the relaxation time, one evaluates A = b'
from (5) at a fixed point, with b the length rescaling
factor (b = 2 in our case). The renormalization group
is now iterated n times, until the couplings reach a
high-temperature regime Kt"l, for which the relaxa-
tion time r "' = r (K " ) is some finite constant. Since
r —7 (Ktol) —A"r&"l and g= ((Kt l) = b"(t"l one
finds r —g'. Thus the magnetization associated with
sites that survived n interations is found to be given by
M "' —exp[ —r/r]. Since for translationally invariant
systems all sites are equivalent, the total magnetization
is also given by precisely the same form.

In hierarchical systems, however, the situation
differs in two important ways. First, in our case (for
L ~), no matter how many iterations are taken, the
surviving spins still constitute a hierarchical system.
For sufficiently large n, our system maps onto a prob-
lem with E&~"~ && 1, i.e., nearly decoupled pairs of
spins (see Fig. 1); the coupling within these surviving
pairs is, however, arbitrarily large, Ez" + m/3!
Therefore, even for large n one cannot assume
rt"i=const, and identify A with b'. Since our Glauber
model is one of single-spin-flip dynamics, the strong
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interpair bonds must also be broken for equilibration,
and the hierarchical nature of the dynamic problem is
present after any number of iterations. This does not
hold for statics: For K&~" && l the correlation length
is —1, and therefore we do get g

—i)"
The second important distinctive feature of our

hierarchical model stems from the fact that since the
problem is not transitionally invariant, not all spins re-
lax at the same rate. Therefore at each step of decima-
tion we must evaluate and add up the contribution to
the total magnetization that is due to the spins that are
being eliminated. The exact decimation of Achiam20

stops at calculating A, while Henley's heuristic argu-
ment'5 does take the hierarchical nature of the prob-
lem into account. Stopping after the decimation, ob-
taining A, and using the standard arguments yields
dynamic scalings. Calculation of M changes this con-
clusion, and resolves the controversy. '5 20

So far our decimation was exact. In what follows we
consider the model in the regime K2 & K& && 1, and
apply the standard approximations of using the
"linearized recursion relations, "

up to the matching

point K&" &( 1;

A = 2; exp[2K,' ' ] = 2 exp[2K, ];

2lt e (
21t'

(6)

M„equals by definition the magnetization per site of
the hierarchical model obtained after decimation of the
spins (a.}, with couplings given by (2) and time re-
scaled by A; M„=M")(t/A) O.n the other hand,
M is the magnetization per site of a system obtained
after decimation of the spins (p, }. This yields a linear
chain ((T } with alternating couplings, which within our
approximations (6) are given by K) ——K)"' and K2,
yielding M = exp[ —t/Ar(')], where r")= exp[2
&( (Kt"' + K2) ]. Repeating this procedure n times for
M„we find

The magnetization per site is given by M (t )
= (M„+M )/2, where

M„=(2/L)Tr)„) Tr) )P(( }, (p, }; )Xp, ;, (»)

M =(2/L)Tr) ) Tr)„)P(((r},(p, },t)io;. (7b)

(Sa)

M(") is the magnetization of very weakly (K)(") « 1)
coupled pairs, with bonds K2("' + mK3 within the
pairs. Using (6) and some algebra one finds23 2'

M(t) $ 2
—(m+1) item (Sb)

with 7 = exp(2[K) +K2+ mK3] }. As expected, (Sb)
does not depend on the matching point n. Calculating
M(t) by the method of steepest descent, we find

( 2(K|+)r2))

M(t) = (t/T ) '; x(K ) =(ln2)/2K (9)

for times t/ro) t =)(xK )3; tt is obtained by the re-
quirement that the value mo that dominates the sum
(8) be larger than zero.

Integrating (Sb) yields

(2X 2-(m+)) W-) (10)

where W '=exp[2(K2+mK3 —K&)] can be inter-
preted [see W following (3)] as the inverse rate at
which a single domain wall moves over a bond of
strength K2+ mK3., the prefactor 2 + ' represents
the concentration of such barriers. This identifies v„~
as the time it takes a wall to to diffuse a distance (.
The corresponding diffusion constant,

I/D = 7„)/( = ( W '),
is similar to that found in the diffusion problem6; D

vanishes, and r„, is infinite, when the temperature-
dependent parameter K3= J3/kT is above its dynamic
transition value K3 = J3/kT„where x(K; ) = 1. As
T T,+, v„l diverges as

r„,= ro(2 —e ') (12)

This concludes our proof, for L ~, of the ex-
istence of a dynamic transition, in the parameter range
K2& K& && 1 and arbitrary K3. Another regime in

which the problem is trivially solvable is when
K, « I, where Eq. (Sb) is self-evident. This strongly
supports the existence of a transition at K3 ——K3 for all

K) and K2.
For finite L, the sum in (8) must be cut off at

m, „=log2L. Therefore, the algebraic behavior (9) is
valid only when 0 & mo & m, „, i.e. , t( & t/ro

Ale t/x(sc, )
t2 x (K3)L ' . For t/7 0 ) t2, the t depen-

dence of M is dominated by the slowest term,
exp( —t/v ). The sum (10) now yields Eq. (I).

Are our results relevant to dilute Ising systems at
their percolation threshold p, ~ At p, the backbone of
the infinite incipient cluster is described by the "links
and blobs" model, 26 in which two sites at a linear dis-
tance L are connected via L((L ) —L't" singly con-
nected bonds (g~ —Ip —p, l

") with exchange con-

stant K, = J/kT each, and a hierarchy of blobs of mul
ticonnected spins with linear sizes (t) distributed as26
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/ '. Each "blob" represents a minimal energy bar-
rier"'6 iJ.E(/) —2J(A in/+8) and a corresponding
relaxation time. Ignoring dangling ends, one might re-
normalize each "blob" into a single bond, with ex-
change constant K (/) = K (A ln/+ 8 ) and with

weight / '. This reduces to a random version of our
model, with Ki, K2, and K3 of order K = I/kT and
m —lnt.

In spite of these similarities with our model, there
exist several possibly important differences. First, a
detailed application of our results to percolation re-
quires inclusion of dangling ends, averaging over finite
clusters, and (possibly) treating the dynamics within
blobs in more detail. Another difference concerns the
spatially random assignment of the hierarchically dis-
tributed effective bonds. Since randomness" turned
out to be irrelevant in the hierarchical diffusion prob-
lem, our present results may also remain valid in the
random case.

A crucial difference arises from the fact that in a
percolation cluster with L & (, regions of size ( are be-
lieved' ' to contain only barriers smaller than
K2+ K3 in/. Since equilibration involves only such re-

gions, the sum in (8) should be cut off at m ',„—In/.
In our model, however, a finite fraction of these re-

gions will contain barriers of size lnL. To describe per-
colation clusters with L & g one should thus use Eqs.
(1), with L replaced by (. Indeed, at low temperature,
our Eq. (la) becomes r„,=7o(T) xg '+'/", in agree-
ment with the heuristic arguments' ' and with nu-

merical simulation. '7 27 However, our paper contains
many additional predictions at higher temperatures. In
particular, an algebraic decay of the magnetization is

expected for intermediate times ti & t/~o

& x (K3)$ . Since similar behavior is expected&/x{x,)

for the spin-relaxation function, fitting its Fourier
transform to a Lorentzian for all frequencies2' may be
misleading.

For L & (, the L dependence of our results should
remain valid. This will always happen at sufficiently
low T. In computer simulations, with relatively small
L, this should apply even at moderate temperatures.
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