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Phase Transitions in Finite Systems

In their Letter,! Singh and Pathria make three
claims which require further evaluation. They pertain
to a d-dimensional system, infinite in d' dimensions,
which exhibits a critical phase transition in the thermo-
dynamic limit, and are as follows: (1) The free energy
takes a geometry-dependent but otherwise universal
form from T=T,(o) down to T=0; (2) the ap-
proach to bulk behavior for T < T, (o0 ) is governed by
bulk exponents of the d- and d’-dimensional systems;
and (3) specific predictions about the exponents
governing the approach to bulk behavior are made.
These will each be discussed below.

Starting with statement (3), the authors predict that
if X is a thermodynamic function such that the d-
dimensional bulk behavior is X ~ 777 and the d'-
dimensional bulk behavior is X — T'“7, then in the
finite system X ~ LT ~7, with

{=(y+y)v. (D

The authors do not make clear how general they ex-
pect this result to be, but this result only holds for the
spherical model. To see this, take the fully finite case
(d’=0) and let X be the susceptibility X. For any fully
finite O(n) model the susceptibility obeys X ~ L9/ T in
the low-temperature phase, as can be easily shown
from the fluctuation-response relation. Thus, (1) im-
plies that dv=+y +1. Comparison with the hyperscal-
ing relation dv =y + 28 shows that Eq. (1) can only be
satisfied if 8= 7, i.e., only if n =c0 or d =4 in the
0O(n) model.

It is possible to generalize the authors’ arguments to
the O(n) model. They start by extending the Priv-
man-Fisher hypothesis? to the low-temperature phase;
the singular part of the free energy density is assumed
given by f(T,HL)=TL™ %Y (x,x,) where Y is
geometry dependent but _universal, x;= C LY,
x,=C,LAH/T, and 1 and C, are functions of T de-
fined to make this work down to T=0. The low-
temperature behavior of these two functions is crucial
to their analysis, and thus the natural generalization is
to define two new exponents, p and ¢, such that as
T—0,C,— C T? and 1 — CltT 9, where C1 and C2
are nonuniversal scale factors (note that p =+ and
q =1 were used in the Letter, but these hold only for
the spherical model). The generalization of Eq. (1) is

(=ly+(y+2p=1)g /v ()

However, the determination of p and g is nontrivial.
There is the condition that in the fully finite case {=d.
This and hyperscaling implies that p/q = 8. Another
condition suggested by the authors is the finite-size
scaling Ansatz, namely ¢ ~ £¢Z . However, use of this
relation for n =2 is hindered by the fact that £ = oo
for T<T,? Thus, the predictive value of this ap-
proach is questionable without further study.
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The question of the approach to bulk behavior for
T < T.() has been extensively studied.* Low-
temperature analysis indicates that the exponent
governing the approach ({) can be determined from
the behavior of the d’-dimensional system. This is be-
cause below T, (oo) all correlation lengths in the finite
dimensions are pinned at L, so that all degrees of free-
dom in these dimensions are essentially frozen out.
The only fluctuations are in the infinite dimensions.
Thus, { is governed by 4 and the exponents of the d'-
dimensional system. In light of this, the conclusion of
the authors summarized in statement (2) of my open-
ing paragraph is too weak; the bulk exponents of the
d-dimensional system are not required.

The starting assumption of the paper, statement (1),
predicts a universal crossover from the 7,(o) finite-
size scaling regime to the low-temperature regime.
This is plausible. One expects the low-temperature
phase to have the universality of the d'-dimensional
transition at 7 =0, which is critical and has L as an ir-
relevant variable. On the assumption that the bulk
system has only one critical transition temperature, all
correlation lengths in the finite dimensions are equal
to L at and below 7,(c0). Thus, as long as all ir-
relevant variables are small compared to L, the free
energy is essentially universal even for T as large as
T.(oo). All systems in the same d’-dimensional T'=0
universality class collapse onto a universal, low-
temperature function for L sufficiently large at T, (o).
Likewise, at T, (o), the free energy is of the univer-
sality class of the bulk transition. If the universality
class of the low-temperature phase includes that of the
bulk transition, a universal function will describe both
regimes, as envisioned by these authors. Perhaps this
is the condition for t and C, to be universal.
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