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The local-density approximation has been very useful for ground-state calculations. Here an
analogous approximation is developed for the ensemble of M lowest states, recently discussed by
Theophilou. Algorithms are provided for the exchange-correlation energy, EM_ and potential, v,
of ensembles of slowly varying density, n (r). These quantities are highly nonlocal functionals of
n (r) but calculable in terms of properties of uniform, thermal ensembles. Excited-state energies

and densities can be obtained.

PACS numbers: 71.10.+x, 31.50.+w, 71.45.—d

The ground-state density-functional theory of
Hohenberg, Kohn, and Sham (HKS)'?2 was formally
extended by Theophilou® to the mean energy, EM, and
mean density, n(r), of an ensemble consisting of the
lowest M states equally weighted by the factor 1/M. (I
shall call such an ensemble an equiensemble.) This
theory allows, in principle, the calculation of individual
excited-state energies and densities, E,, and n,,(r). In
analogy with the HKS theory, the essential required
quantities are the exchange-correlation energy and po-
tential, EM [n (r')] and vM(r, [n(r')]), both function-
als of the ensemble density n (r').

The practical usefulness of the HKS ground-state
theory has been largely due to the simplicity and
surprising accuracy of the so-called local-density ap-
proximation (LDA):

Eoln(r)]=fen(r))ar, 1)
v (r)=lde(n)/dnl, -, 2)

where e,.(n) is the exchange-correlation energy per
unit volume of a uniform electron gas of density » in
its ground state. The present paper reports briefly a
generalization of the LDA to the equiensemble. A
complete manuscript has been submitted elsewhere.

I remark first of all that expressions for EM and v}
analogous to (1) and (2) do not exist. The reason is
that, for given M, the contribution of a volume ele-
ment dr to E % depends strongly not only on the local
density, n(r), but on the density, n(r’), everywhere
else. Nevertheless, a quasi LDA is possible for the
equiensemble. This approximation is more accurate
the larger the number of particles, &, and the smooth-
er the density n (r). The derivation proceeds via the
thermodynamic equivalence of such a large and
smooth equiensemble with a canonical ensemble of

o) = () + [ g MGl (D),
lr—rl
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appropriate temperature 9. Temperature ensembles
were first discussed by Mermin,* and local-density ap-
proximations for Ef. and v%., quite analogous to (1)
and (2) do exist.? However, the temperature 6 of the
canonical ensemble equivalent to the equiensemble of
M states and average density n (r’') depends both on M
and on n (r’) for all r'. Furthermore, the temperature,
6,, of the noninteracting [Kohn-Sham (KS)] canonical
ensemble which is thermodynamically equivalent to
the noninteracting (KS) ensemble of M states is dif-
ferent from 6.

The final results are the following: Consider a sys-
tem of N electrons in a given external potential, v(r).
The objective is to calculate the average density, n (r),
and average energy, EM, of the lowest M eigenstates.’

(1) One requires the following thermodynamic func-
tions,® for homogeneous interacting and noninteract-
ing electron gases, of the density n and temperature 6'.
(The subscript s denotes noninteracting and the sub-
script / differentiation with respect to temperature.)
(a) The entropies per unit volume, o®(n) and
o9 (n), and their temperature derivatives, of (n) and
a?/(n). (b) The exchange-correlation plus kinetic en-
ergy per unit volume, e® (n ), and its temperature
derivative, ¢® (n). (c) The Kkinetic energy per unit
volume of a noninteracting system, ts"’(n), and its
temperature derivative, £ (n).

(2) Begin with an initial approximation to n(r).
Determine the corresponding interacting temperature
6 and noninteracting (KS) temperature 6, by solving,
respectively, the implicit equations

k lnM=fo'9(n(r))dr;
(3)
koM = [ o*(n(r))ar.

(3) Construct the effective one-particle potential

4)
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where v is given by the following expression:
06
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wll= |5 -1e"(n) =4 (n)] L tTEO Jefn(ryyar e J i nryyar, (5)
with
90 _ 30'0(”) 9 B -1
Bn(r) h on ]n=n(r)[fol(n(r))dr] (6)
and
(]
20, 90 (n) ] , 1
E —_— ’ ’ — . 7
an(r) an n=n(,)[~r0"'(n(r Vr'l M
(4) Solve the KS single-particle equations
[—3V2+0M(r)—€loM(r)=0. (8)
(5) Construct the M lowest noninteracting N-particle wave functions ¢, ,(m =1, ..., M) and calculate their

average density n’'(r).}

(6) If n’(r)=n(r), then the original n (r) was self-consistent. If not, repeat steps 2-5, starting with a different
initial density until self-consistency is achieved.

(7) Now determine the average energy, E™, of the equiensemble as follows. Let E;,(m=1,..., M) be the
energies of the M lowest KS states. Then

2 GD g g (M (e + [ (1) =1 (1)) ), )

EM=AV(Es,m)_%f tr—r'l

where Av(. . .) denotes an unweighted average over m.

By successive calculations for increasing M, starting with M =1, the excited-state energies £, and densities
n, (r) (averaged over multiplets) can be obtained. The quantitative accuracy of this quasi LDA for systems in
which N is not very large and/or n (r) is not slowly varying remains to be tested.
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