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Density-Functional Theory for Excited States in a Quasi-Local-Density Approximation
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The local-density approximation has been very useful for ground-state calculations. Here an

analogous approximation is developed for the ensemble of M lowest states, recently discussed by

Theophilou. Algorithms are provided for the exchange-correlation energy, E~ and potential, v~
of ensembles of slowly varying density, n (r ). These quantities are highly nonlocal functionals of
n (r ) but calculable in terms of properties of uniform, thermal ensembles. Excited-state energies
and densities can be obtained.

PACS numbers: 71.10.+x, 31.50.+w, 71.45.—d

The ground-state density-functional theory of
Hohenberg, Kohn, and Sham (HKS)'2 was formally
extended by Theophilou3 to the mean energy, E~, and
mean density, n (r), of an ensemble consisting of the
lowest M states equally weighted by the factor 1/M. (I
shall call such an ensemble an equiensemble. ) This
theory allows, in principle, the calculation of individual
excited-state energies and densities, E and n (r ). In
analogy with the HKS theory, the essential required
quantities are the exchange-correlation energy and po-
tential, E~ [n (I') ] and u~(r, [n (r') ] ), both function-
als of the ensemble density n (r').

The practical usefulness of the HKS ground-state
theory has been largely due to the simplicity and
surprising accuracy of the so-called local-density ap-
proximation (LDA):

E„,[n (r') ] = e„,(n (r'))dr',

v„,(r ) = [de„,(n )/dn ]„„(,),
where e„,(n) is the exchange-correlation energy per
unit volume of a uniform electron gas of density n in

its ground state. The present paper reports briefly a
generalization of the LDA to the equiensemble. A
complete manuscript has been submitted elsewhere.

I remark first of all that expressions for E~ and v~
analogous to (1) and (2) do not exist. The reason is
that, for given M, the contribution of a volume ele-
ment dr to E„,depends strongly not only on the local
density, n (r ), but on the density, n (r'), everywhere
else. Nevertheless, a quasi LDA is possible for the
equiensemble. This approximation is more accurate
the larger the number of particles, N, and the smooth-
er the density n (r). The derivation proceeds via the
thermodynamic equivalence of such a large and

t

smooth equiensemble saith a canonical ensemble of

appropriate temperature 8. Temperature ensembles
were first discussed by Mermin, and local-density ap-
proximations for Ea, and ua„quite analogous to (1)
and (2) do exist. 2 However, the temperature 8 of the
canonical ensemble equivalent to the equiensemble of
M states and average density n (r') depends both on M
and on n (r') for all r'. Furthermore, the temperature,
e„of the noninteracting [Kohn-Sham (KS)] canonical
ensemble which is thermodynamically equivalent to
the noninteracting (KS) ensemble of M states is dif-
ferent from 8.

The final results are the following: Consider a sys-
tem of N electrons in a given external potential, v(r ).
The objective is to calculate the average density, n (1 ),
and average energy, E~, of the lowest M eigenstates. '

(1) One requires the following thermodynamic func-
tions, for homogeneous interacting and noninteract-
ing electron gases, of the density n and temperature e'.
(The subscript s denotes noninteracting and the sub-
script i differentiation with respect to temperature. )
(a) The entropies per unit volume, aa(n ) and.

C
~ ~ I

0., (n ), and their temperature derivatives, o.
&

(n ) and

o, i(n). (b) The exchange-correlation plus kinetic en-
I

ergy per unit volume, ea (n ), and its temperature
I

derivative, cia (n). (c) The kinetic energy per unit

volume of a noninteracting system, r, (n), and its
I

temperature derivative, t,a, (n ).
(2) Begin with an initial approximation to n(r).

Determine the corresponding interacting temperature
8 and noninteracting (KS) temperature 8, by solving,
respectively, the implicit equations

k lnM = J o(n(r ))dr;.

k lnM = J (r, *(n(r))dr.

(3) Construct the effective one-particle potential

u~p(r ) = u(r ) + J
dr'+ v~(r; [n (r') ] ),

& n(r')
r —r'

(4)
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where tr~ is given by the following expression:
r

r)[e'(n ) —r, '(n ) ] + el (n(r'))dr'—r)8

l1 I'
, n =n(r)

g
1, 1'(n (r') )dr ',

rl r
(5)

[ (rrs(n (r') )dr']Bn(r), Bn „„(,) " (6)

88,
r)n (r)

8(r~ (l1 )
t) l1

(4) Solve the KS single-particle equations

[ ) ~2+ M(r) & ]yhf(r) 0

(5) Construct the M lowest noninteracting N-particle wave functions P, (m =1, . . . , M) and calculate their
average density n'(r ).

(6) If n (r) =n(r), then the original n(r) was self-consistent. If not, repeat steps 2-5, starting with a different
initial density until self-consistency is achieved.

(7) Now determine the average energy, E~, of the equiensemble as follows. Let E, (m =1, . . . , M) be the
energies of the M lowest KS states. Then

E = Av(E, ) ——,
' dr dr' — v„,(r)n (r )dr + [es(n (r)) —t, '(n (r)) }dr,

n (r ) n (r') 8
(9)

where Av(. . .) denotes an unweighted average over m.

By successive calculations for increasing M, starting with M =1, the excited-state energies E and densities
n (r) (averaged over multiplets) can be obtained. The quantitative accuracy of this quasi LDA for systems in

which jr)r is not very large and/or n (r ) is not slowly varying remains to be tested.
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