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Radiative Corrections to P Decay and the Possibility of a Fourth Generation
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Leading-logarithmic radiative corrections to P decay are summed via the renormalization group
and structure-dependent O(n) effects are estimated by a form-factor analysis. These refinements
reduce the Kobayashi-Maskawa quark-mixing-matrix element I Vzl by 0.13% to 0.9729+0.0012.
Combined with IC,3-, hyperon-, and bde-cay constraints, this implies I v~l'+ I v I'+ v„, l

=0.9954+0.0025. Although consistent ~ith unitarity at the 2o. level, our result leaves open the
possibility of a fourth fermion generation which at 90/0 confidence level may have mixing I V I as

large as 0.088.
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That would constitute a clear violation of unitarity
which, for example, requires in the three-generation
case

I v~1'+ I v I'+
I v~ I' =1. (3)

PACS numbers: 13.40.Ks, 12.15.Ff, 23.40.8~

The comparison of 0+ 0+ superallowed Fermi P
transitions and muon decay has played an important
role in the development of the standard model of
strong and electroweak interactions. The conserved-
vector-current hypothesis, current algebra, Cabibbo
universality, and a host of other theoretical advances
have their roots in such studies. More recently, it has
been shown' that experimental measurements of & t
values in superallowed Fermi P decays, when com-
bined with muon and K,3 (or hyperon) decay rates,
provide a precision test of the standard SU (2) L
8 U(1) model at the level of its quantum corrections.

Indeed, neglecting radiative corrections, one finds

I v~l'+
I

V I'=1.032

(without radiative corrections) for the first two ele-
ments of the Kobayashi-Maskawa2 quark mixing ma-
trix

Fortunately, the O(a) radiative corrections which are
finite and calculable in the SU(2)L 8 U(1) model
have the right sign and magnitude to render I

V~lz
+ I V I & 1 and restore unitarity. ' This quantum-
loop triumph for the standard model is, in a sense, an
electroweak counterpart to the many O(a) successes
of quantum electrodynamics (g —2, hyperfine split-

tings, etc.).
In this Letter we wish to refine still further the cal-

culation of radiative corrections to P decay. Our goal
is to push this O(n) test of the standard model to the
level of a few tenths of a percent. Then, scrutinizing
the three-generation unitarity constraint in Eq. (3), we
will be able to place restrictions on new physics such as
fourth-generation mixing or glean a signal of its pres-
ence. To that end, we will employ a recent detailed
analysis of K,3 and hyperon decays by Leutwyler and
Roos3 that found

I
v I=0.221+0.002 (4)

and combined measurements of the b-quark lifetime
and bounds on I'(b u)/1 (b c) which imply3 4

I v„, I & o.oo8. (5)
We begin by summarizing the results of Ref. l.

There it was shown that after normalization of P-decay
amplitudes in terms of G„=1.16635&&10 s GeV
the muon decay constant, O(n) radiative corrections
to superallowed 0+ 0+ Fermi transition rates gave
rise to an overall factor'5

1+ g(E ) 1+ 41n +ln +2C+ Mg2 tr
™ 27r mp mg

which reduces ~t values and I V~I2 derived from them. The first factor in Eq. (6), sometimes called the outer
correction, s represents a spectrum-averaged effect that depends on the end-point p energy E . The remaining
(inner) corrections are dominated by the large short-distance term 4 ln(mz/mp) (mz = 93.2 GeV,
mp = 0.938 GeV). Also present is an axial-vector-induced structure-dependent contribution ln(m~/m„) +2C,

1985 The American Physical Society



VoLUME 56, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JANU&Rv 1986

where m& is a low-energy cutoff applied to the short-
distance part of the y H'box diagram and 2C represents
the remaining long-distance (low-frequency) correc-
tion. This term depends on the details of strong-
interaction structure at low energy and is therefore the
main source of uncertainty in the radiative corrections.
Finally, M ~ denotes small perturbative 0(n, ) QCD
corrections that can be rather reliably calcUlated. '

In previous extractions of ~ V~t from measured ~ r

values, the inner correction factor in Eq. (6) was gen-
erally taken to be 1.0210. From that value, a recent
up-to-date analysis by Towner and Hardy which ob-
tained a recommended Xr = 3080.1 + 2.4 sec leads to'

t V„d [
= 0.9742 + 0.0004, (7)

where + 0.0004 represents the error arising only from
experimental and nuclear theory uncertainties. (Nu-
clear effects stem from isospin-breaking Coulomb
corrections to transition matrix elements. s)

To refine further the Towner and Hardy result and
estimate the theoretical uncertainty in t V~t due to ra-
diative corrections, we have carried out the following
reanalysis of Eq. (6).

(I) The small perturbative QCD correction M~,
which was estimated to be —0.37 in Ref. I, has been
reduced slightly in magnitude to

gf g= —0.34.

This change is due to a shift in sin &w and n, (1 «»

ln +2C =0.0012 +0.0018.
27r mg

(9)

(3) Since the (2n/m )In(mz/m~) contribution is the
largest O(n) correction in Eq. (6), we have approxi-
mated the effect of higher orders by summing all
leading-logarithmic corrections of 0 (n" ln "mz), n
= I, 2. . . , via a renormalization-group analysis. Such
a summation replaces Eq. (6) with'2

from 0.35 and 0.5 (used in Ref. 1) to more contem-
porary values of 0.22 and 0.3, respectively. 9

(2) The structure-dependent term ln(m~/mz ) + 2C
arising from the axial-vector current was estimated by
a procedure similar to the approach used by Marciano
and Sirlin. 9 For the low-energy cutoff m„, we allowed
for a range 400 MeV«mz «1600 MeV, while the
low-energy part 2C was approximated by the Born con-
tribution in two models of nuclear decay. In the first,
following Dicus and Norton, ' we considered the
0+ 0+ decay of the nucleus as a whole in which
case C = 0. In the second, we employed an inde-
pendent-particle model of the process, in which case
the Born contribution was analyzed by a new calcula-
tion involving nucleon electromagnetic and axial-
vector dipole form factors. " We found C
= 3g„(0.266) (p~+ p, „)= 0.885 where p, + p, „=0.88
is the nucleon isoscalar magnetic moment. Allowing
for the above ranges, and using a symmetric error, we
estimate

tlap n(mp)1+ In +2C + [g(E )+A ] S(m, m ),
27F m

(10)

where

S(m~, mz) = n(m, )
' ' n(m, )

'
n(mb) n(m, ) n(mg ) n(mz)

n(mp) n(m, ) n(m, ) n(mq) n(m) n(m~)

is a QED short-distance enhancement factor and n(p, )
is a running QED coupling defined by MS (modified
minimal subtraction) which satisfies'2

n(p, ) = bon2(p, ) + higher orders,
dp,

(12a)

0 XOge(p, ——m~) — «—p —m~) (12b7

3~ 2m

(sum over all elementary fermions),

n ' (0) = 137.036+ — = 137.089.I
(12c)

The values of n(p, ) to be used in Eq. (11) are found

n '(mz = 93 2 GeV) = 127 66

n '(mg =82.2 GeV) =127.73,

n '( m, = 40 GeV) = 128.95,

n '(mp=4. 5 GeV) =132.04,

n '(m, = 1.78 GeV) = 133.29,

n ' ( m, = 1.25 GeV) = 133.69,

n '(m~=0. 938 GeV) =133.93,

which when inserted into Eq. (11) yield

S(mp, mz) =1.02256. (14)
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Including the above refinements, we find in the case
of '40 (for example) where g(E ) =11.107 that Eq.
(10) gives 1.0369 + 0.0019 to be compared with
1.03417 used in the Towner and Hardy analysis.
(The relative increase is essentially the same for all
eight 0+ 0+ transitions analyzed in Ref. 7.) Rescal-
ing their result for l V~l by (1.03417/1.0369)'t2 and
taking the conservative approach'3 of doubling the
quoted uncertainty in Eq. (7), we find

l V~l =0.9729+0.0008+0.0009. (15)

The central value of l V~l has been reduced by 0.13%
and an estimate of the theoretical uncertainty,
+0.0009, in the inner corrections has been deter-

mined. Using this value along with the constraints in
Eqs. (4) and (5) and combining errors in quadrature„
we f"md

I v~l'+ I
v I'+

I
v~l'=0. 9954+0.0025. (16)

The result in Eq. (16) is consistent with three-
generation unitarity at the 2-standard-deviation level
and must continue to be viewed as a quantum-loop tri-
umph for the SU(2)L 8 U(1) model. Nevertheless, it
is interesting to speculate as to what effect new physics
would have on our analysis. In particular, the ex-
istence of a fourth fermion generation could manifest
itself as a deviation from three-generation unitarity.
Employing Eq. (16), we find that at 90'/0 C.L. the
fourth-generation mixing parameter l V&, l is not very

stringently bounded:

I V„& I & 0.088 (90% c.L.). (17)

In fact, the central value in Eq. (16) corresponds to
l
V, l

=0.068 [compare with Eq. (5)]; but the error
would have to be significantly reduced before one
could argue that evidence for fourth-generation mix-
ing had been found. Regarding the likelihood of a
fourth generation, we remind the reader that such a
scenario is not in conflict with any experiment. In
fact, some grand unified theories actually predict'~ that
there should be at least four relatively light genera-
tions. It is also interesting to note that recent papers
by Anselm et al. and He and Pakvasa'5 have demon-
strated how relatively large fourth-generation mixing
could resolve problems with accommodating the CJ'-
nonconservation parameters ~ and ~' in the three-
gcneration theory. It may also lead to detectable—1% Do-Do oscillations'5 and an enhancement in
K+ m. + v v. Clearly, a fourth generation with
l V, l

—6% would be an exciting development with

many interesting experimental implications.
If a fourth generation is not responsible for the

small deviation from unity in Eq. (16), what is. The
simplest explanation is that I V~l, I V l„or I V„, I (or
more than one) is actually larger than the range of

values we have allowed. In the case of I V„b I, there is a
tendency for the experimental b lifetime to be getting
shorter than the value 1 x 10 '2 sec used in obtaining
Eq. (5). If, in addition, I (b u)/I (b c) actually
exceeds the experimental bound 0.04, then l V„t, l

could increase beyond the bound in Eq. (5). Howev-
er, it seems unlikely that l V„t, l can be as large as 0.068
which is needed to bring the central value in Eq. (16)
up to 1. Nevertheless, 7b, I'(b u)/I (b c), and
their mutual dependence on l V„bl need continued ex-
perimental and theoretical scrutiny.

A second (perhaps more likely) possibility is that
l V~l is actually as large as 0.231 rather than in the
range of Eq. (4). Indeed, hyperon P decays do favor a
higher value. 3'6 Unfortunately, SU(3)-breaking ef-
fects in hyperon P decays are potentially large and not
well under control. 3 More theoretical work is called
for.

Finally, there may be additional uncertainties in the
nuclear 0+ 0+% t values. We have allowed some-
what for such a possibility by doubling the error quot-
ed by Towner and Hardy. However, it is our belief
that the O(Za2) corrections (Z= charge of daughter
nucleus) and the nuclear Coulomb corrections still
need to be critically reexamined. '3 On the side of ex-
periment, it seems unlikely that the precise data'7 em-
ployed by Towner and Hardy will shift very much. It
would, however, be useful if comparable measure-
ments could be carried out for 0+ 0+ superallowed
transitions in 'OC which has a (small) Z = 5 daughter
and hence relatively small Z-dependent effects. Of
course, all Z-dependent corrections as well as much of
the theoretical uncertainty can be eliminated by a pre-
cise high-statistics experiment on pion P decay n+

m 0+ e+ + v, .' " (The small branching ratio,
1&&10 8, makes such a measurement difficult. ) A re-
cent Los Alamos experiment'8 found lv„ql=0. 962
+0.018 from pion beta decay. Although that result is

in good agreement with Eq. (15), the experimental er-
ror is too large for it to be meaningful at the level of
our analysis. However, it should be clear from our
discussion that a new higher-statistics experiment is
imperative and should be undertaken. '9 20

In summary, our results demonstrate the impor-
tance of radiative corrections and precise experimental
measurements. Superallowed 0+ 0+ nuclear beta-
decay ~ t values remain a quantum-loop triumph for
the SU(2)t 8 U(l) theory even at the several tenths
of a percent level we have analyzed and provide a
stringent constraint on new-physics appendages or
competitors to the standard model. Future experi-
ments and continued theoretical scrutiny will deter-
mine whether the small deviation from unity in Eq.
(15) is evidence for new physics, such as a fourth gen-
eration, or merely the effect of additional theoretical
uncertainties. To help resolve this issue and provide
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as precise a determination of I V~l as possible, a new
high-statistics pion beta-decay experiment ~ould be
particularly useful and we strongly urge such an under-
taking. '9 2o Finally, we note that it is extremely impor-
tant to lower the errors on I V,dl=0. 24+0.03 and
I V„I =0.85 +0.15 by precise measurements of charm
production and decay. Used in the unitarity con-
straints IV„dl2+IV,dl'»I and IV I'+I V„l'~1,
they can provide useful checks on I V~l and I

V I.
More importantly, on the assumption that a reliable
determination of I V,&l from b decay is forthcoming,
the three-generation unitarity constraint I Vd I2

+ I V„I'+ I V,al2=1 may also be used as a probe of
fourth-generation mixing. Unitarity of the Koba-
yashi-Maskawa matrix is a powerful constraint that we
are only beginning to exploit.
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