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Near-photon-number-eigenstate fields lead to dramatic signal-to-noise improvement beyond the
standard shot-noise limit in many optical systems, including interferometric gravitational-wave
detectors. These fields may be generated from parametric processes with measurement feedback.
Degradation from nonideal photodetection can be overcome by appropriate optical preamp}if ication.
It is estimated that an order-of-magnitude improvement can already be obtained with existing de-
vices.

in) —
i Gn), (4)

where the gain G & 1 is an integer. That such a device
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For an optical beam in a photon-number eigenstate
i n ), no measurement error would result if the
photon-number operator N is measured. In such an
ideal situation, one can expect tremendous perfor-
mance gain over an ordinary laser coherent-state beam
which is shot-noise limited. In this paper, I will show
how such an ideal situation may be approached, and
how significant improvement over the coherent-state
shot-noise limit may be obtained with current technol-
ogy. It will be shown that dramatic improvement in
precision interferometry can also be obtained, similar
tO SqUCCZ1Ilg.

For photodetection with quantum efficiency 0
& q ~1, the input field mode suffers an effective

fractional loss 1 —q. Thus, the detected field mode is
described5 by a photon annihilation operator b,

t =q"'a+ (1 —q)'l'c,

where a and c are the annihilation operators for the in-

put mode and an independent vacuum-state mode,
respectively. It follows that the mean square photon-
number fluctuation for b is

(b Nt2) =q2(EN~2) +v](1 —v)) (N ), (2)

where Nt, = bb, etc. The di—rect detection signal-to-
noise ratio is, for the a mode in a number state in)
with n=S,

S (Nb)' &s
N (gNb2) 1 —q

'

which can be compared to qS obtained from a
coherent state ia) with the same (N, ) = S. It appears
from (3) that a very high q —1 is necessary for actual-
izing the benefit of i n) .

Even if g could never be brought close to unity, one
could still realize the full potential of in) by optical
preamplification via a "noiseless photon amplifier. "
Mathematically, this device effects the state transfor-
mation

is in principle possible can be seen from the realization
consisting of N measurement followed by iGn)-state
generation, which, of course, is useless for the present
purpose. Recently, I showed6 that possible realizations
exist within a unitary development description on a
larger system, say including a material system, without
the need of measurement first. To illustrate how this
device may be physically approximated, consider the
system indicated in Fig. 1. The incident photon at fre-
quency to combines with a pump photon at frequency
(G' —l)to to excite an "atom"' through resonant two-
photon absorption via a virtual intermediate state,
which then decays via resonance fluorescence with G
output photons at frequency to' = G'to/6~co. A
change in frequency to to' away from to does not affect
the resulting S/N but may make the scheme more
practical. To minimize multiple input-photon absorp-
tion and induced G'-to-photon emission, we can either
have moderate input power, or set G' away from an in-
teger, or let G' be an odd integer since levels 2 and 1

have the same parity. To minimize multiple pump-
photon absorption we can set G' ) 2, or use moderate

ta(G -1)

FIG. l. A possible mechanism for the realization of a
noiseless photon amplifier; level 1 is occupied initially and
Gco =6M.
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pump power, or again use the parity-selection rule.
With an obvious effective Hamiltonian describing the
action of this device, the transformation l n) „

lGn), is obtained in a first-order perturbation

treatment of photoabsorption with sufficiently many
absorbing atoms per input photon. To get a large G,
the use of an avalanche mechanism may be contem-
plated. If a weak probe beam at cu' is applied with vir-
tual intermediate states between levels 2 and 1 for in-
duced G-co'-photon emission, one can obtain space-
time coherent outputs at the expense of introducing
some photon-number uncertainty at the output via the
probe. Further investigation is required for determin-
ing the ultimate practicality of this realization. But
perhaps it is already clear that the noiseless photon
amplifier is a viable device concept.

If the input state to the noiseless photon amplifier is

g„X„ln), the output state is g„h.„lGn). Thus, if the
a mode in an arbitrary state is first sent through this
device before photodetection, it follows from (1) that

(N&) is given by qG(N, ) and the S/Nbecomes

S (N)' I -~ (N)
(AN2) Gri (AN2)

This goes to qG (N, )/(I —q) in the limit (AN2) 0.
Equation (5) shows that the effect of nonunit q can be
compensated by a sufficiently large G. It should be
clear that such amplification in the photon number
would also suppress other randomness introduced in the
subsequent photodetection process, including dark
current and thermal noise. Furthermore, the noiseless
photon amplifier does not really have to be noiseless.
It is oniy required that the added photon fluctuation be
small compared to q2G2(AN2) similar to the noise
suppression factor in (5). Thus, the S/N may not be
significantly degraded by probe-beam-induced pho-
ton-number uncertainty or other nonideal disturbance
and higher-order effects in the realization of Fig. 1.
This device may lead to highly sensitive detection sys-
tems. In such case, the detection statistics for small
(b,N2) will be more than just sub-Poissonian
((hXb) ( (N&)); it will be strongly sub-Poissonian
corresponding to that of a near number state.

Sub-Poissonian light was first observed in atomic
fluorescence. Recently, a variety of systemss " have
been suggested for generating sub-Poissonian light via
measurement feedback. Consider the parametric in-
teraction described by the Hamiltonian

Hl ++s Qk Op+ K Qs+igp (6)

where a„a,, and a~ are the annihilation operators for
the signal, idler and pump modes, respectively. From
(6), the operator Manley-Rowe relation'2

N, (r) —N, (O) = N, (r) —N, (0) (7)

follows easily. In traveling-wave systems, r can be in-

terpreted as a spatial variable. It is clear from (7) or in
fact from (6) that each time the pump photon creates
an idler photon, it must also create a signal photon.
Let N—= N, —N, . From (7), (bN2(r)) —0 whenever
(b N2(0) ) —0, and (AN2(0) ) —0 in parametric
fluorescence, superfluorescence, and oscillation.
Thus, if a photon is detected at the idler mode one can
expect the presence of a corresponding photon at the
signal mode. This has been verified experimentally in
parametric fluorescence. '3 In fact, it can be shown
that after one counts n photons at the idler mode the
corresponding signal mode is indeed in state ln). So
one may consider the generation of l n) at the signal
mode by stopping the signal after n counts at the idler.
However, parametric fluorescence'0" or atomic cas-
cade emission yields low-intensity output which can
only be detected with high-gain low-q photodetectors,
resulting in a near unity Fano factor F=—(b, N&~)/(Ni, ).
(F=1 is the coherent-state shot-noise limit. ) While
high-intensity output can be obtained in the scheme of
Yamamoto and co-workers, s it seems that there is a
strong limit on the F that can be so achieved.

These problems can be somewhat alleviated in a
parametric amplifier or oscillator, and in certain cor-
responding four-wave mixer configurations. Inside
a doubly resonant parametric oscillator one can get
(lLN (r)) —0. However, the fields need to be cou-
pled out of the cavity through a mirror with reflectance
R. As a consequence, the output photon-number
correlation is

(4N2) = 2R (1—R ) (N, )

for (N, ) generated inside the cavity. Equation (8) can
be derived by relating the output and the cavity a, 's
(and also a, 's), similar to the b and a of Eq. (1), with

q =1 —R It imposes a major limitation on the achiev-
able F to 2R outside the cavity. It may be possible to
get F- R for a singly resonant parametric oscillator by
continuously tracking the idler count outside the cavi-
ty.

For parametric amplification,

(bN'(r ) ) —(AN2(0) ) —(5N'(0) ) .

In contrast to fluorescence and oscillation, here the
signal photon-number fluctuation for a given idler
count is no longer simply given by (AN (t)). It
depends on the specific number counted with
(b, N2(r)) being the average over all idler counts.
Neglecting pump quantization and depletion, one can
compute explicitly the joint counting probability
P(n„n, ) and also P~(n„n, ) for counting over M in-
dependent signal and idler modes with initial signal
coherent states lo.;), vacuum idler states, and the
same real g=—~(a~). Let p, =cosh(gt), v —= sin—h(gr),
and I = gP il~, l2/lp, l2. The mean of N, conditioned
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FKJ. 2. Output number-eigenstate generation via idler-
measurement feedback on the signal shutter; additional
feedback on the pump permits better control of the genera-
tion.

on a count n, can be derived'" as

$„,=—E[n, (n;]

= n, + (1+LM, ( —l)/L~ ' (l) t l,

where L„ is the Laguerre polynomial. The conditional
variance is'4

Var[n, (n, j = (m+ S„)l (u--I)(S„-n, )

—(S„,—n, )' (.10)

For large n, , S„—n, +(n, l)'t2 —n; T.he conditional

variance is ——,
' (n, l)'t from a careful asymptotic

analysis, ' so that the Fof the output signal is

F——,
' (l/ n)'t' (11)

Thus, a very small F may be obtained for any given I,
albeit with a correspondingly small probability P~(n, )
which is the M-fold Laguerre counting probability. 's

Let A —(p, (2 —(v (2 be the power gain per mode. For
n, —A2l & (N, ), the mean number of idler photons
generated, (ll) becomes F-1/2A. The plausibility
of this result, which is what is needed in the following,
can be seen from the estimate F—(4N (t))/
(N(t)) —1/A in which the unconditional variance
(EN2(t)) —Al is used in place of (10). It can be
shown that (8) and (11) are not sensitive to thermal
background and loss in the generation process.

Thus, strongly sub-Poissonian light can be generated
at the signal mode when an optical shutter is used to
turn off the signal output after photodetection at the
idler, as indicated schematically in Fig. 2. If one wants
to generate S signal photons over a time interval T by
this method, one can set (N, ) to be S plus, say, ten
standard deviations of P~(n, ). It is no mystery that
the signal photon statistics can be controlled this way,
as the "statistical ensemble" of signal photons is being
directly manipulated. For average idler power P, and
optical-shutter response time v, additional signal pho-
ton fluctuation is induced through the idler photon-
number variance 5 over the interval 7. From Pvt(n, ),
one finds 8 —2APt~ for amplification and 8 —AP, r for
oscillation and superfluorescence. If the idler counts
are continuously fed back to vary the pump intensity

+2R(1 —R) + (12)

where T is the observation interval, Pd and P,„ the
dark and thermal noise power. Equation (12) incor-
porates the important fluctuations in both the genera-
tion and the detection processes, including nonideal
idler detection. If the last term in (12) can be effec-
tively suppressed, it is easy to get F—0.1 in a pulse
experiment even for parametric superfluorescence, the
limit on F being set by q In the pulse .case, the term
2R (1 —R ) would also drop out for parametric oscilla-
tors by use of cavity dumping. With the 2A7/T term
in full effect for 7 —1 nsec, an F—0.5 may be ob-
tained from a cw or quasi cw parametric oscillator with
R —0.2. A better choice would be a parametric am-
plifier (R =0) for which one may get' a gain A & 10

according to an appropriate control law, it should be
possible to reduce this tail fluctuation greatly and to
bring the required idler power P; very close to the
desired signal count.

A great advantage of near-number-state beams com-
pared to squeezed light is their robustness with respect
to disturbance. There is no phase-sensitivity require-
ment in the system. Another key point is that one can-
not expect but does not need to resolve individual photons
for useful application. If one can resolve —(S/r)'t2
photons, one can improve the signal-to-noise ratio by a
factor of r with S signal photons. For any given im-
provement level or tolerance limit, fluctuations in the
generation and detection processes would not matter so
long as they are below that limit. While one added noise
photon destroys squeezing completely, it would do nothing
to a near-number-state beam unless one wants to
resolve individual photons. Thus, the state generation
would not be affected by spontaneous emission even
in media with near-resonant transitions, and the out-
put signal and idler photon numbers need only be
correlated to the tolerance level. A host of other prob-
lems that affect squeezing generation in a parametric
process also dissolve here.

As a consequence, it appears possible to perform a
demonstration experiment with noise significantly
below the shot-noise limit by just using existing de-
vices. The counts n, and n, can be obtained by mea-
surement of the photocurrents of p i nsil-ic-on diode
detectors. Near 1 p, m, one can get such photodiodes
with g —0.95, milliwatt saturation, and essentially no
dead time. The achievable F can be estimated from
the above consideration, with neglect of some finer
details on the operation of a parametric amplifier or
oscillator. With only feedback on the shutter, the out-
put signal Fat idler count n; —P; T—S„ is

(ANs2(0) ) 2q(Pd+ P,h)F- +2g 1 q+—
I i
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for T —1 p, sec with a 5-cm LiNb03 crystal. Of the
many possibilities from (12) I merely quote one set of
numbers: A —102, I —105, T —10 5 sec so that
P, T —109 with F —0.1 limited by q .Note that the
second and third terms in (12) can be suppressed with
a noiseless photon amplifier. Thus, with good feed-
back control it is possible in principle to generate near
number states this way.

Loss severely limits the advantage of any nonclassi-
cal state. '7's However, one may expect that near-
number-state beams and low-loss fibers contribute a
powerful combination that may find application in
communication and data processing systems. In fact,
the information capacity of a lossless channel is max-
imized by ln) and N measurement among all possible
quantum states and quantum measurements, under an
average power constraint on the states. '7 Further-
more, correlated number-state beams also lead to sig-
nificant improvement in precision interferometry. For
almost all interferometer configurations, the input
modes ai, a2 and output modes bi, bz are related as

bi = ai cosf + lrr 2 sing,

b2= iai sin@+ a2cos@,

where @ is a small phase to be estimated. The in-
terference may be observed through

Na, —Nb, =(N, ,
—N, ,)c os/2

+ i(at a2 —a2 ai)sin2$, (14)

with the interferometer performance measured by the
mean square error in estimating $ from this difference
count. This mean square error is —(S/N) ' for
small q5; thus the rms photon-counting error ( is—(S/N)' 2. For the ai mode in a number state lS)
and the a2 mode in vacuum, g is S 'i2 from (14),
identical to that obtained from a coherent state lS'i2) .
If a correlated photon-number state for the input
modes

ly) =-,'~2(ln) tin —I)2+iles —I) tin)2) (15)

is used with n = S/2, the resulting g becomes —S
the same as that obtained from an optimized single-
frequency two-photon coherent-state system. 4 Note
that S is also the discretization error in a number-
state system. Similar discretization error occurs in
coherent detection with finite local oscillator power S.
This error S is directly applicable to laser gyro-
scopes. In particolar, one may consider the possibility
of detecting gravitational radiation by measuring the

gravitational-wave induced phase shift of an optical
beam in a fiber gyroscope. For application to the
laser-interferometer gravitational-wave detector3 4 in
which the gravitational-wave-induced mirror motion is
monitored, the radiation-pressure error on the mirrors
has to be included. In such a detector, (15) still pro-
vides the same performance as the optimized single-
frequency two-photon coherent-state system, namely, "
achievement of the standard quantum limit with input
power —S~ti2 where S~;„ is that required for a co-
herent-state system. One may consider generating
(15) from two independent number-state beams via
spatial interference. And there are many other corre-
lated number-state beams that would also lead to im-
proved performance.
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