
VoLUME 56, NUMB@ 20 PHYSICAL REVIEW LETTERS

Line Functionals and String Field Theory
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An alternative covariant formulation of string field dynamics is given, in which functions of
one-dimensional curves (line functionals) are the essential ingredients. Guided by the geometrical
principle of manifest reparametrization invariance and the correspondence to Nambu-Goto string
dynamics in the x =7 gauge, we derive generalized Dirac-string field equations linear in the
momentum density. It is shown that in three dimensions the equations for closed strings admit an
equally spaced mass-squared spectrum, including massless particles of spin 0 and l.

PACS numbers: 11.17.+y

During the past year, considerable progress has been
made towards the incorporation of gauge invariances
in the covariant formulation of string field theories.
The gauge-invariant, covariant treatment of free bo-
sonic strings and superstrings has been accom-
plished, '2 and the inclusion of interactions appears
near at hand. i There is every indication that these
theories are consistent with older formulations based
on the light-cone gauge, even to the point of reproduc
ing the Veneziano scattering amplitudes. More re-
markably, they provide a natural explanation for the
origin of non-Abelian gauge symmetries and general
coordinate invariance. 4

In several respects, however, the current proposals
for covariant string field actions seem less than satis-
factory. At the most fundamental level they ignore
the basic fact that objects appropriate to string field
theory are functions of one-dimensional open or
closed curves in space-time, or line functionals
@[line].5 The line functional @[line] may be written
as 4 [xt'(o ) ], where each line configuration is
represented by its coordinates xt'(tT), 0~ o- ~ 1. The
fact that 4 is a function of lines means that 4 does not
depend on the parametrization of each line, or in other
words,

x'(tr) p(tr)@[xt'(~)] =0,

where p„(o ) = i5/5xt'(tr ). In the standard covariant
formalism, however, one supplements constraint (1),
representing tr-reparametrization invariance, with the
dynamical constraint

{p'+ x'/(2m+')'I+[xt'(o ) ] =0, (2)

implementing ~-reparametrization invariance on world
sheets. These two constraints are equivalent to the
conditions L„4=0 for every generator L„of the
Virasoro algebra. The difficulty introduced by con-
straint (2) is that, at the quantum level, these condi-
tions are incompatible with the existence of a central
charge in the Virasoro algebra. We can salvage this
situation by requiring that only L„with n & 0 may an-
nihilate physical states. However, since (1) is
equivalent to the conditions (L„—L „)4=0, we im-
mediately recognize that a-reparametrization invari-
ance is not maintained in the physical sector so de-
fined. Thus in the standard covariant formalism one
necessarily abandons the very notion of line function-
als, thereby obscuring the geometrical principles
underlying these string field theories.

In view of these and other problems, it is
worthwhile to consider alternative formulations of
string field dynamics which are geometric in the sense
of condition (1). To do so, as we have argued, we
must somehow eliminate the need for dynamical con-
straints such as Eq. (2). In this Letter, we explore one
such alternative: a multicomponent line functional
'P [line] which obeys a generalized Dirac equation.
Our development follows closely the approach of
Marshall and Ramond, 6 in which manifest o.-

reparametrization (RP) invariance is maintained at
every stage. Dynamical constraints are avoided by re-
quiring that the generalized Dirac equation we shall
present reproduces Nambu-Goto string dynamics in
the x = ~ gauge. Other studies of line functionals may
be found elsewhere. 7 s

Our starting point is the Nambu-Goto action
evaluated in the "laboratory gauge,

"x (v, o-) = T.

(3)

n (3). The Hamiltonian is given by
~1

H = '

dt's (x'2) ti'2{ p2/x'2+ (2n n') 2 j'i2. (5)40

Note that the Hamiltonian is RP invariant, as may be
verified by commutation of the constraint (4) with H.

x't~) p(tr)=0,

corresponding to the residual a.-RP invariance of the

t1
Si,b = —(2~a') I d7 dtr [(x x')'+ (x')'(I —)x (') ]ti'

where x'=Bx'/Bv and x'=Bx'/Bo. , i =1, . . . , d —l.
In this gauge, the canonical conjugate momenta p(o. )
satisfy t ae, and only one, constraint,
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We may not attempt to infer a wave equation for
string fields 4[r, x(o)] in this gauge by replacing
p(o. ) by —iS/Sx( o) in Eqs. (4) and (5), which are
now viewed as operators acting on 4:

x' p4=0,

i (14/67 = HC.

Equation (6) simply states that 4 is a line functional of
spacelike curves x(a.). Equation (7), however, is ill-

defined since we have the problem of interpreting the
square root in H. Following Dirac's treatment of the
relativistic point particle, we replace H by

f do (x'2)'/2M((r), where

M( )= ( ) p/(x')"'+P( )/2

is a linear matrix operator which obeys the relation

M(o. )2 = p'/x'+ (2n n')

up to terms proportional to x' p. Thus we arrive at

the wave equation,

(10)

for a multicomponent line functional V),b[r;x(a. ) ] in
the laboratory gauge.

The correspondence condition (9) represents a set
of nontrivial constraints on the matrices n'(o)and.
P(o.), but we expect as in the point-particle case that
Lorentz covariance will more stringently limit their
possible forms. We consider therefore the manifestly

I

where W obeys the covariant analog of Fq. (6):

x'((r) p((r)0=0 (12)

To restrict the possible forms of the matrices I "(o.)
and A(o. ), we shall require that (i) Eq. (11) be
Lorentz covariant, translation invariant, and RP in-
variant; (ii) I'"(cr) and A(cr) commute with p„(o.);
(iii) I'"(o.) and A(cr) depend on o only through
x„'(o.) and its derivatives; and (iv) Eq. (11) repro-
duces (10) in the laboratory gauge with a local matrix
M(o) satisfying Eq. (9). Conditions (ii) and (iii) are
to some extent arbitrary and may be relaxed in a more
general theory. Condition (iii), for example, forbids
the introduction of spin-density degrees of freedom as
encountered in versions of the spinning string.

Conditions (i) and (iii) imply that I""(cr) and A(o. )
depend on a only through the RP-invariant tangent
vector, t„=x„'/( —x'2)'t, and its derivatives with
respect to arc length. Among them only t"(o)itse. lf
satisfies condition (ii); thus I'"(o.) and A(a. ) may be
expanded in a Taylor series in t" with constant matrix
coefficients. Condition (iv) then fixes the form of
I""(o) up to three independent terms, whereas A(o)
may contain terms of arbitrary order in tt'(a. ). We
take the simplest case A(a. ) = I to obtain the follow-
ing wave equation for closed strings:

covariant equajjon

t l [ —x'(~) ]'t'
d~ I'"(~)p„(~)—,A(~) +=0,

2'tr A

[al "P„+—,
' Sl'P" )M„„+,'icI'P~)M—„„+ —i/2m'' }'I=0.

Here
I

1 t l |1
I'„=„derp„((r), M~~„+-) =„der(t„p„+t„p„), i=) do ( —x'2)it',

while a, b, and c are unspecified real constants. The constant matrices I')("+) (I'P" )) are symmetric (antisym-

metric) in their Lorentz indices. Without loss of generality, we may also require rt„„l)i"+)=0 since t p always

annhilates V.
»e subtlety encountered in implementing condition (iv) is the proper interpretation of po(o. ) in the laboratory

gauge; the naive substitution po(o. ) iS/S7 is incorrect as it violates RP invariance. This difficulty is resolved by

the introduction of string coordinates y"(s ), 0 ~ s ~ 1, which are parametrized by arc length is (a.):
y"[s (o.) ] =x"(o.). With the identification

'Pi,b[~;x(o.) ] =+ [yt'(s) ] I,,( )

one may easily show that

(14)

1 +iab
1 5 1 s (15)

[ —x'(cr)2]'t2 Sxo(cr) i Syo(s) 0(, )

Notice that (14) and (15) are justified only for line functionals.
With the substitution (15) made, we find that for closed strings Mk(0+-+ vanishes in the laboratory gauge. Con-

sequently, Eq. (13) may be cast in the form (10) up to an overall multiplicative constant 1/a which is absorbed by

rescaling of r. The matrix M(o. ) so determined fulfills the correspondence condition (9) provided that (i) the I
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matrices satisfy the anticommutation relations

[I'",I "]=2q"", [ I g" ), I't~
) }= 2 (q~"v)"~ v—)"~v)""),

[f['+)~ f):)]=2[~"'~"+~" ~""-(2/d)~""~".]
(all other anticommutators vanish), and (ii) the parameters a, b, and c obey the relation

a2+ b2+ c2=1.

(16)

is an integer, known as the rotation index of the closed
plane curve x(a). In particular, q= +1 for simple
(i.e., nonintersecting) curves.

For smooth curves with q WO, Eq. (13) is reduced to

(21)

l v) =0.
21rcL

If we employ the boundary conditions (,q 0 as
i ~, the eigenvalues of p2= ni2 corresponding to
the Ansatz (19) are found to be quantized:

m2= (2~bq ~/n'a2) n, n =0, 1, 2, . . . .

One can show that the algebras for I'p ) and I'g+) are equivalent to Clifford algebras in d(d —1)/2 and

(d —1)(d + 2)/2 dimensions. Finally, the generators of Lorentz transformations are given by

d~(xt'p" —x"Q)+ —,i[I,I "]+—,
' t[fg ), f'& ) ]+—„' i[I( ) I'& ) ] (Is)

In passing, the algebra of I't|'" ) in (16) has been in-

troduced in the context of string field equations in
work by Hosotani. '0 Our Eq. (13) differs from the
equations there which were derived from a correspon-
dence to the Hamilton-Jacobi equations for classical
strings. Equation (13) also differs from the equations
of Marshall and Ramond6 and the second-order equa- d 1
tion 2(L0 —1)PC=0 encountered in the standard co- a (po —p' a') g —2~qb&3

dl
+

27r Ix
variant formalism. '2

In three dimensions Eq. (13) can be solved for c =0
in the laboratory gauge, xo(o ) =yo. For I" and I'g"

)
we choose the following realization of the algebra (16): a(po+p cr)(+ 2wqbv3 ——
1"~=+8 I, I' t" )=iy5 8 ~k, and I'I ) =y5 8 7'3,

where Q are the 4X4 Dirac matrices in the spinor
representation and Tk the 2X2 Pauli matrices. We
look for solutions to Eq. (13) of the form

g(l)
( ) (19)

t 1

q = ( I/211 ) da ttf it tj (20)

where $(l) and q(l) carry two spinor indices on which
a. (in y) and r act. Here l is the string length and y is
the center-of-mass coordinate; in the arc-length
parametrization, y= J do x(a.). Periodicity of x'(cr)
also implies that

Besides obtaining the equally spaced mass-squared
spectrum characteristic of free string theories, we see
that Eq. (13) with c=0 also admits massless particle
states.

With our choice of the representation of I' matrices,
the rotation generator (1S) for the functional (19) be-
comes

0
7 3p

a a 1J» ———i yi —y2 +— 8 I+-,'I 8
ay, ay, 2

whose spin piece is a direct product of two spin- —,

representations. We see that eigenstates (22) have
spin 1=0 and 1. Since eigenvalues of orbital angular
momenta are always integral, we conclude that in 1+2
dimensions Eq. (13) with c=0 defines a bosonic
string theory. This statement, however, depends on
the dimensionality d and on the choice of constants a,
b, and c; in 1+3 dimensions with c =0, for instance,
'p describes a fermionic string.

One might wonder if Eq. (13) can be derived from
the variation of an action. To discuss actions for line
functionals, we must first supply a precise and unique
definition of a measure in the space of curves. This

(23)

has been accomplished and will be presented else-
where "

We have attempted to define a string field theory as
a theory of line functionals, arriving at the manifestly
RP-invariant and Lorentz-covariant field equations
(11) and (13). It remains for further work to ascertain
whether the approach to string field dynamics that we
have outlined above coincides with the more conven-
tional treatments of the covariant string. Qf particular
interest are the quantization of the model, the ex-
istence of tachyonic states, the incorporation of gauge
symmetries, and the determination of critical dimen-
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sjons. These and other topics are currently under in-

vestiga. tion.
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