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Change of the Adiabatic Invariant due to Separatrix Crossing
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%hen a parameter in the Hamiltonian of a one-degree-of-freedom oscillator is slowly varied at
rate ~, an adiabatic invariant exists which is conserved to all orders in e, except on phase-space or-
bits which cross a separatrix. In the present work, the change in the adiabatic invariant due to a
separatrix crossing is given to order ~ for a wide class of Hamiltonian systems. This result is applied
to the special case of a charged particle moving under the influence of an electrostatic wave with
slowly varying amplitude and frequency.

PACS numbers: 03.20.+i, 46.10.+z, 52.20.—j

The theory of adiabatic invariance in classical Hamiltonian systems breaks down when phase-space orbits cross
separatrices of the phase flow. In this work, the behavior of separatrix-crossing orbits is described for a wide class
of Hamiltonian systems. These systems are represented by Hamiltonians of the form H(q, p, A. ) whose phase-space
contours include a generic separatrix consisting of two lobes connected by an x point (see Fig. 1). Examples are
double-minimum potential wells and (less obviously) the simple pendulum. When the parameter A. is slowly
varied at rate e = dX/dt between two values A.; and Af, a near-invariant of the motion J(q,p, X;&), called an adia-
batic invariant, exists in the form of an asymptotic power series in e, the first term of which is the action 1(q,p, X):

J(q p, Z;e) =1(q p, X) + eJt(q p, I ) +e'J2(q p, Z) +. . . .

The truncations of this series are e-dependent phase
functions which are conserved to the order of trunca-
tion, except when the orbit crosses a separatrix during
the variation. ' In this Letter, the change in the value
of the adiabatic invariant (of all truncations of the
series above first order) is given for separatrix-crossing
orbits to order e. A more detailed study will show the
error calculations and the statistical implications of
these results.

This work was motivated by the need for a precise
description of separatrix crossing in a number of

FIG. 1. Separatrix crossing orbits for —Y,
'

& Fb' & 0.
Single- and double-crossing orbits are sho~n relative to a
generic separatrix. The positions of the n = —1, 0, + 1 ver-
tices are indicated.

diverse applications. Action-variation calculations
have been applied to studies of energy and momentum
balance for waves in collisionless plasmas, ~6 while
slow separatrix crossings have been discussed in stud-
ies of mirror-containment degeneration due to low-
frequency fluctuations7 and particle transport in
strongly turbulent plasmas. Slow separatrix crossings
also occur in high-energy accelerators, where coasting
particles are trapped and bunched by slowly ramped rf
fields, and in colliding-beam storage rings, where beta-
tron amplitudes can diffuse due to repeated slow cross-
ings of beam-beam resonances. 9 Applications also ex-
ist for free-electron lasers, where electrons cross or are
trapped by phase-space buckets, and in celestial
mechanics, e.g. , in the analysis of pairs of satellites
with near-commensurable mean motions. ' Many
celestial-mechanics applications are discussed by Hen-
rard "

To avoid confusion in the application of these
results, the following conventions are adopted. Suit-
able coordinate transformations are made such that the
energy h (the value of the Hamiltonian function) is
zero on the separatrix. The three regions separated by
the separatrix (see Fig. 1) are labeled a =a, b, and c,

1986 The American Physical Society



V0LUME 56, NUMsER 20 PHYSICAL REVIEW LETTERS 19 MAv 1986

where c is the outside region. The action I (q p g) at
a particular phase point q,p in region o. is defined to be
the integral fp dq, in the direction of the phase flow,
around the closed contour of the Hamiltonian at )
which intersects q,p (note that the actions may be neg-
ative). The actions associated with the separatrix itself
are denoted Y, (k) and Y&(A.) for the two lobes, with

Y, ( X) = Y, ( X) + Yi, ( X) . A near-separatrix orbit
passes close to the x-point once each period (twice,
when it is in region c). The points of closest approach
to the x point are called "vertices. " Each vertex of a
particular orbit is labeled with an integer n

=. . . , —2, —1, 0, 1, 2, . . . , ordered as the vertices
occur in time and such that the n =0 vertex is always

the outside vertex closest to the point of crossing
(although the vertices of a particular orbit are defined
relative to a certain choice of metric, the results Il ob-
tained below do not depend on this choice). The ener-

gy and value of X at the n th vertex are denoted h„and
Lobe a is assumed to be the lobe whose encircle-

ment by the orbit immediately precedes the n = 0 ver-
tex. The exponentiation rate of motion near the x
point is denoted by ao, and each lobe is characterized
by the derivative of the lobe area with respect to X at

hh = —e Y', o, =a, b, c, (2)

hx. =(e/2') {in(h /h„)+ln[(h /(h„+b,h )] j,

gy h at A. = Xo. Actions are approximately conserved.
Therefore, as the two lobes slowly change size, most
orbits cross the separatrix separating the three regions
a, b, and c. There are two general types of crossings:
single crossings which cross to or from the external re-
gion, and double crossings, which cross from one lobe
to another.

The calculation of EJ is performed as follows. The
change in the first-order adiabatic invariant
J' = I + &Ji is calculated for the N individual steps (or-
bit segments between consecutive vertices) on either
side of the actual crossing. The 2N step changes are
then summed to give the change in l' over the entire
near-separatrix part of the orbit. It is then shown that
as N ~, this sum is equal (to relevant order) to the
full change b J' that occurs on a crossing trajectory
between two fixed values of X.

The calculation of the step change in J' is based on
the approximation that for near-separatrix orbits in re-
gion o. , the nth step change Ah in energy and the n th
step change in AA, in A. are given by

+=a, b, (3)
Y' ~ 8 Y,/tl A, u = a, b, c,

and the constant

where T (h ) is the period of orbit in lobe a with ener-

even when the orbit crosses the separatrix during the
step. It follows from Eq. (2) that the 2W steps span an
energy interval of order ~, and that within this inter-
val, h may be assumed to be small. This leads to a
small-energy approximation to J' at the vertices which
depends on h, A. , and four separatrix constants
Y, (ha), Y' (1i.o), h, and g (defined below):

J' (h, P„q)=I (h, P )+~[g +f (h))+o(h i )+O(eh), I (h, A) = Y (X)+(h/ro)(I+lnlh /h I), ~=a b,

Y.' lnlh /h I
- t}p,«, t}p,

g = lim' —&)dq „' dq' ', a=a, b, f, (h) =
0 2(u " h" &0

Y.
'

1n {h,/h { Y,
' ln)h. /h i—

26)

with g, = g, +g&, I, = I, + I&, and f, = f& = 0. The function P (q, h, X) is found by inversion of the Hamiltonian
equation H(p, q, X) - h, i.e., solving for p in terms of (q, h, A. ). The integrals are taken around the contour of the
Hamiltonian defined by h at 1i. = A.o, in the direction of motion, with qo the value of q at the vertex of the contour.
The constant g is zero if lobe e is symmetric (up-down, in Fig. 1). The function f, (h ) is zero if the separatrix is

symmetric with respect to reflection about the x point. With use of Eqs. (2), (3), and (4), the calculation of the
step change in J' is straightforward. The sum of the 2N step changes gives an approximation to the net change in
J' over the full orbit (the sum converges as W ~). For orbits that cross from region n to region P, the net
change in J' is given by

~J (I 0, ~0) =s&(ho)+ J, (ho, }0)+s (ho) J'(ho, }0)+0(—&

I (1 —m. )
S (ho)= (m —2)lnim {

—m +ln, i, , ~ ——a, b,

& Y,
'

S, (ho) = ' —(2m, +A„)ln{m,{+2m, +ln
I (m, + l)I (m, +8„)

2m

2118
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where m = {ho/Ah {,R„=Ah~/Ah„and I (x) is the
usual gamma function. The subscript y is the label a
or b of the lobe not entered (or left) by a single-
crossing orbit. All of the explicit terms in Eq. (5), ex-
cept the Y, are order e or order e Inc. The result (5)
is independent of the choice of metric. Although the
constants g and Y (A.o) depend on the metric, the
sum I' (A.o) +~g does not.

If hh, and b, ht, have different signs, }ho{ varies from
zero to the larger of {hh, {, {hht, {, with the smaller of
them dividing this range into two parts. The part with

the smaller values of {ho{ gives double crossings while

the part with the larger values gives single crossings.
As a result of precrossing phase mixing, any smooth
distribution of initial conditions defines an ensemble
in which every value of ho (within the above range) is

equally probable. Thus the probability of a double
crossing is given by the smaller of l~h, j~hb},
~Eh', /bh, {. This result was proved by Neishtadt'2 and
Henrard. "

As an illustration, the above formula is applied to a
well-known (but previously unsolved) problem. The
system consisting of a charged particle moving under
the influence of an electrostatic wave with slowly vary-

O x
2%'

FIG. 2. The wave-particle separatrix and its correspon™
dence to the generic separatrix.

gy lobes)

0 (P, g, t ) = —,
' (I' —0 t ) —2 ( 1 + A t )sin2 —,

' 0.
The areas inside and above the wave separatrix in Fig.
2 correspond to the regions c and a, respectively, in
Fig. 1. The various parameters that determine the
change in action (5) are

e Y,'=(4A +2mB), e Yb =(4A —27r0),

h, =ht, =32, g, =gb=0, ~=1,

Y, (ZO) = Yt, (xo) =8, f, (ho) =2vrQ In{ho/32{.

ing amplitude (I+At) and frequency Qt is defined by In previous studies of this system, the definitions of
the Hamiltonian the actions have differed slightly from the conventions

chosen here. If we define the "wave standard" invari-
H(p, tI, t) = —,

' p'+ (I +At)cos(q ——,
' Qt') ants+' =J' f ' = —J&', and f ' = —J, , the changes in

A canonical transformation puts this into a form con- the wave-standard adiabatic invariant are immediately

sistent with the above conventions (with positive ener-, obtained from Eq. (5) . For single and double cross-
ings, respectively, these are

Q,f t(ho Xo) = 2~ {s("o) +Jt(ho Xo) «+s ("0) 4(ho Xo). (6)

a,f '(h, , ),) = —{S,(h, )+J,'(h, , ),) }+S.(h, ) J.'(h, , ),).-

(9)
S, (h ) =2m' {(m ——,

' )ln{m
~

—m +in[I'(1 —m )/(27r)'t'] «,

4

For the special case 0 =0 where only single crossings are possible (particles become trapped in the wave), the
symmetries reduce h,f ' to

b, ,f '(ho, ) 0) = —4A ln[2sin(em, )], (8)

where m, = ~ho/ —4A {. This was derived by Timofeev'3 in 1978. For the special case A =0 where only double
crossings occur

Ad f'(ho) = 2s, (ho) —16—2ho(1+ in{32/ho{),

where md= {ho/2m 0{. This gives the change in the
momentum hp =hfdf'/2m of a particle caused by its
being passed, in velocity space, by an accelerating
wave. Note that for both special cases (8) and (9),
hf' is equal to the change in the wave-standard ac-
tion.

The error in the general expression (5) for AJ' will

be small if the larger of {Ah, ~, {hht, { is much less than
the smaller of h„hb, and if ho does not get too close to
the extremes of its range [e.g. , provided }ho«
& h&exp( —ca{ I' (Ao)/Ah {),for any combination of

I

regions u, P = a, b ].
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