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Diffusion in a Random Potential: Hopping as a Dynamical Consequence of Localization
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A model of diffusion f(x, t) =hQ(x, t) + V(x)$(x, t) is studied, where V(x) is the Gaussian
random potential. It is found that the probability distribution function is concentrated (localized) at
some metastable potential attractor, while the localization center hops discontinuously in search of
a better metastable attractor. The sample-averaged localization-center displacement is found as
x, —t/aint, i.e., it is sub-ballistic.

PACS numbers: OS.40.+j, 05.70.Ln, 66.30.Lw

Transport in random media and diffusion-controlled
reaction and recombination have been classical topics.
Recently there is much revived interest in these sub-
jects because of wider connections recognized in phys-
ics, chemistry, and biology, and the deeper under-
standing gained in fractal and hierarchical nature relat-
ed to these processes. ' Qne particular model of this
class is a random walk in a random-trapping environ-
ment. Previous analyses2 show that the total survival
probability is an exponentially decreasing function with
a suitable exponent. The question of the relative
spatio-temporal distribution rather than the total sur-
vival is addressed in this Letter.

A generalization of the random-trapping model is
proposed which can be expressed as diffusion in a ran-
dom medium:

where Q (x, r) is interpreted as the probability distribu-
tion function and note that fd~xp(x, r) is not a con-
served quantity as it is in random-random walk
models. 3 V(x) is a random variable with short-range
correlation and A. measures the strength of random dis-
order. In analogy with a similar model A. can be re-
garded as the inverse of the temperature (i.e.,
A. = I/T). All other constants have been absorbed in
the units. In random-trapping models previously stud-
ied2 it was shown that the total survival p (r)
=f dip(x, r) —exp( —r ), where a is the so-called
survival exponent.

The focus in this Letter is to study the spatial fluc-
tuations of Q(x, r), i.e., the relative probability distri-
bution. Thus the first moment ( V(x)) will remain
unspecified since it does not contribute to the fluctua-
tions.

Before going on to analyze Eq. (1), let us motivate it
with an idealized biological problem: Suppose we
study the evolution of a certain species which has an
initial distribution $(x, 0) =5(x) and assume that the
species can move in space via diffusion. Then intro-
duce a "fitness" order parameter V(x) taking both
positive and negative values, which may represent a
random distribution of nutrients and inhibitors. We
want to know whether the species is relatively concen-
trated and if so how the population center moves in
space, if it moves at all. [Another question, whether
the total species is exponentially increasing or decreas-
ing, which depends nontrivially on ( V(x)), will be
addressed elsewhere. ] Similar processes probably can
also be found in chemical-reaction systems.

We proceed to analyze the model by first giving
qualitative understanding of Eq. (1). At least for
strong disorder, we expect the distribution function
Q(x, r) to be sharply localized. The question we ask is
this: Given an initial distribution, say $(x, 0) =5(x),
what is motion of the localization center? Clearly the
origin (or places near the origin) may not be the best
attractor (the place with finite spatial spread has
highest combined V values); the population center
would not be localized there foreuer. There is an ex-

Oc 1986 The American Physical Society 2113



Vol.UME 56, NUMaER 20 PHYSICAL REVIEW LETTERS 19 MA+ 1986

ponential tail exp( —x/g) (where x = ~x~ and ( is the
assumed localization length) reaching out from origin;
it covers many better attractors. Given enough time,
Q(x, t) at some of these distant better attractors can
outgrow (or outsurvive in random-trapping model) the
$(x, r) at the first attractor, thus resulting in a hop
from one attractor to a better one. Since we assume an
infinite sample size, any attractor is but a metastable
potential trap. Better and better attractors can always
be found over larger and larger spatial regions with
longer and longer lifetimes spent at each attractor.
There appears to be a natural hierarchy of potential
barrier, distance, and time scales. 5 In the following
the above statements are quantified.

We shall perform a variational analysis rather similar
to that of Mott's variable-range hopping6 for static An-
derson localization. The ideas are best conveyed via
Feynman path-integral language in space and time.
i'(x, t) represents the sum of the contributions from
all possible paths joining (0, 0) and (x,r). In few
dimensions, say one and two dimensions, we expect
that the scaling behavior is governed by its zero-
temperature fixed point. ~ We are looking for the most
dominant i'(x, t) for a fixed time r, which receives
contributions from a single dominant path, at least in
the strong disorder limit. Using the above Q (x,t), the
position of the localization center can be calculated; it
is defined as x, (r) = ((x)),„, where (),„denotes a
sample average.

We follow closely the strategy of Ref. 6. Suppose
such a winning attractor at x for a given time r has the
most dominant Q(x, t). The gain in the exponential of
p(x, t) is r(E„Eo) and t—he cost of overcoming the
potential barriers is xE, where E„ is the largest value
that can be found in a sample of size I, Eo= V(0),
and E is the average potential barrier height. We
demand that for a given time r the total contribution to
the dominant Q (x,t) be maximal, i.e. ,

x, (t) = r/2lnt, (6)

which implies sub-ballistic motion of the localization
center. We note in passing that in d dimensions the
exponent in (4) should be replaced by x~ but x, (r) in
(6) remains unchanged to leading order. If V(x) is
uniformly distributed instead of being Gaussian, a
similar analysis can be carried out with the result

&i/(u+ r}
C

However, as soon as we raise the temperature from
zero, the attractors consist of not just a single site but
of several neighboring sites. It is well known (central
limit theorem) that the sum of any kind of random
numbers behaves approximately as Gaussian. Thus we

expect (as evidenced by numerical simulations) that
for flat randomness the result of x, in (7) crosses over
to that of (6) as the temperature rises from zero.

We performed simulations via the transfer matrix
method with various A. 's to calculate x, = ((x) ),„as
well as x, = (((x') —(x) '),„).'~' The latter measures
the spread of the localized distribution function. The
results are displayed in Fig. l.

O

pansions)

E = [In()x~)]'~'

to leading order when x is large. Substituting (5) into
(2), we obtain to leading order

r (E„—Eo) —xE = max. (2) O

To carry out the variation with respect to x we have to
know E„as a function of x. Assuming a Gaussian dis-
tribution,

P = exp( —V2)dV

O
O

is the probability of choosing a value equal to or larger
than E„ in each trial. Since E is the largest value in a
sample of size l„(l = (x)), then the chance that E„ is
not chosen over x trials must be a finite number
between 0 and 1, say 1/e. We thus have

For large x this implies P —I/I„; substituting the
above P„ into (3) we obtain (using error-function ex-

' 0.0 1.0 2.0 3.0 4.0 5.O 6.0 7.0 8.0 9.0
Ln(T)

FIG. 1. In one dimension the simulations are done on a
chain of 2500 sites, with 4086 time steps, and ~ =1.0. The
crosses indicate data for x, and the cirdes for x,; the curve
1nx, = lnt —1n(lnt) + const is drawn for comparison. We see
that x, scales rather well, while x, is slowly increasing with
ever smaller slope. The data are averaged over 500 samples,
and statistical errors are smaller than the symbol size.
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The above variational analysis offers no hint as to
how x, should behave. Numerically we observed that
the slow increase of x, with t is probably due to the
fact that the better attractors tend to occupy wider

space. However, numerically we were not able to
separate the information concerning how fast the local-

ized Q (x, t) relaxes while x, is hopping around.
Clearly the result x, —(t/2lnt) cannot be true for

all )~. 's and dimensions. Somewhere it must cross over
to the diffusive behavior x, —Jt, but we are not yet at
the stage to say where the transition may occur. We
instead propose a conjecture for which we have some
numerical evidence: Whenever Q(x, t) is localized,
i.e., it has a localization center (time dependent) and is
exponentially decreasing from this center, we always

have (6) as a result, and the above variational analysis
holds. Whenever i'(x, t) is extended we obtain the
diffusive result x, —Jt.

In one dimension we performed simulations over an
extensive temperature range, even for )i. as low as
0.03, and we observed that x, is always consistent with

t/(21nt). In two dimensions we observed different
behaviors between X =0.15 and A. =0.05, as shown in

Fig. 2. However, we cannot rule out the possibility
that the behavior x, —Jt with X =0.05 is due to a long
diffusive transient or that the localization length is
comparable with the lattice size.

There is another important piece of information

which is not contained in (6). Since the hopping is in-
termittent, we would like to know how long the locali-
zation center stays at each attractor, how far it will go
next, and how much better the next attractor is with
respect to the present one. These three quantities are
closely related via (5) and (6); we need a third relation
to reflect the discreteness of the hopping.

Suppose the localization center is now at x, with its
E„and t —2x 1n)x~. Within a region of x around the
origin there is no better attractor by definition. Over a
region of size slightly larger than x there is a chance to
find better attractors. Since E„—(inx)'t2 is a very
slowly increasing function, the possible energy gain
should be very small and thus a very long time to real-
ize that hop is required. On the other hand, over very
distant regions there are much better attractors avail-
able; however, long-distance hopping also requires a
long time. The next immediate hop must be to one of
the better attractors which requires the least time to
realize. Attractors with E„values in between would be
skipped. Imagine that the next attractor is a distance
x' away from the origin, has a value E„' and that it re-
quires a time t' to realize the hop. For this hop to be
realized the total contribution has to be comparable to
that of the present trap, i.e. ,

t'E„' Ex' = t—'E„Ex, —

where E„' = (lnt')'t2. To first order this implies

t —]x' —x /E/(E„' -E.).
Moreover, we demand that t' be minimal. Carrying
out the variation with respect to x' we obtain

E„'= E„+1/2E„+ 0 (1/E„'), E„&1.

Thus, typically the localization center hops next to an
attractor which is deeper by a finite amount while at-
tractors with values in between will never be realized.
The next probable location is

(10)

3.0 4.0 5.0 6.0 /. 0 8.0

FIG. 2. %'hile in one dimension it is observed that there
is no qualitative change for x, as ~ varies, in t~o dimensions
this figure sho~s distinctive behaviors between X=0.15
(squares) and P =0.05 (pluses). The line of x, =Jt is drawn

for comparison. The lattice size eras 200x 200, ~ith 1024
time steps. Again 500 samples were averaged to obtain the
data.

and the typical lifetime spent at the present attractor is
2x'ln(x'). We have not directly tested these results
with systematic numerical simulations.

Incidentally, Eq. (1) arises in another physical situa-
tion as well: Consider an Ising-type model in which the
coupling constants on the same layer are identical and
uncorrelated between the layers. Then Eq. (1) would
describe the interface configurations of the random-
layered Ising system4 in 2D. If we hold two ends of
the interface at fixed positions then the results of this
Letter tell us that the random pinning will distort the
interface by as much as L/41nL, L being the linear
dimension across the sample.

In summary we have analyzed a model of diffusion
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in a random potential, which can be viewed as a gen-
eralization of the random-trapping model. ~ Our varia-
tional and numerical studies indicated that in low
dimensionalities the distribution function hops from
one localized attractor to another, obeying a scaling re-
lation x, —t/(21nr). The reason that this x, is larger
than that of pure diffusion is that the randomness
helps focus the distribution function so that it moves
as a whole object. Such a displacement is clearly non-
back-tracking because of energy nonconservation; thus
the model results in a more efficient transport than
that of pure diffusion.
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