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Ferromagnetism versus Antiferromagnetism in Face-Centered-Cubic Iron
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Using a first-principles disordered-local-moment picture of itinerant-electron magnetism, we cal-
culated the temperature and volume dependence of the magnetic moment and spin-spin correla-
tions for fcc Fe in the paramagnetic state.

PACS numbers: 75.30.Cr, 71.25.Pi, 75.50.8b

Although the equilibrium crystal structure of ferro-
magnetic iron is body-centered-cubic (bcc), the mag-
netic properties of face-centered-cubic (fcc) iron are of
abiding interest. Most commonly, this arises from ef-
forts to account for the stability of y-iron and the rich
variety of magnetic structure displayed by Fe films
grown on Cu substrates3 or to understand the Invar
phenomena in Ni, Fet, and other similar alloys.
While we are mindful of such concerns, the work re-
ported here has a different focus. We study fcc Fe be-
cause it provides us with a dramatic circumstance in
which to address two of the central issues of itinerant-
electron magnetism: the formation of magnetic mo-
ments and the nature of their interactions. We will

present new evidence that as the lattice parameter, a,
is reduced from 7.0 to 6.6 a.u. there is a transition
from a high- to a low-moment state with the interac-
tion between the moments changing from ferromag-
netic (FM) to antiferromagnetic (AFM), respectively.

We shall limit our discussion to theoretical con-
siderations alone. Recently, using the local-spin-
density approximation (LSDA), a number of authors
have studied the magnetic moment per unit cell as a
function of the lattice spacing in both the FM and the
AFM states. 5 7 The latest and most careful of these
calculations is that of Wang, Klein, and Krakauer.
Their results are summarized in Fig. 1. For easy refer-
ence we also show the experimental lattice constant as
a function of temperature. In agreement with previous
calculations, they find in both phases a transition from
a high- to a low-moment state as the lattice parameter
is reduced. Moreover, their total-energy calculations
imply that in the low-moment state antiferromagnetic
order is preferred, while for the large-lattice-
parameter, large-moment state, the energetically more
favorable magnetic structure is ferromagnetic. Else-
where Kubler8 came to the same conclusions and
made the interesting conjecture that one can expect a
local moment, which is independent of its orientation
with respect to its neighbors, only for those values of
lattice constant a for which there are both FM and
AFM solutions to the Kohn-Sham equations. In this
Letter ~e study both the magnetic moments and the

3 ~

1500 I

Tct ~$
&000 = Tc(b «~

T(t)
500—

o(AI
35

I

36

I
I

/
/

/
/

/
/

/
/

/

37
1

4(4g)

6.2 66
Lattl|=e (au )

Constant

6.8 70

FIG. 1. The magnetic moments per site, p, , as calculated
for the ferromagnetic (FM), antiferromagnetic (AFM), and
disordered-loca1-moment (DLM) states of fcc Fe, denoted
respectively by circles, triangles, and crosses. The results for
the FM and AFM states are those by %'ang, Klein, and
Krakauer (Ref. 7) and those for the DLM state are of the
present paper. The lines are added as guides to the eye.

magnetic correlations as functions of lattice spacings in
the paramagnetic disordered-local-moment (DLM)
state. We also find that the moment collapses as the
lattice spacing is reduced and thereby confirm the con-
jecture that the above phenomenon is independent of
the overall magnetic structure. Moreover, by calculat-
ing the static q-dependent susceptibility we are able to
conclude that at the same time as the moment col-
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respectively. Moreover, in the limit of rigid moments
the spin-only susceptibility x(q), in the paramagnetic
state, is given by

X(q) = —,'Pp2/[I —I/3PS"'(q) ], (3)

where p, is the configurationally averaged magnetic
moment and Si2i (q) is the lattice Fourier transform of
S»t2i. For a spin Hamiltonian in the random-phase ap-
proximation x(q) is also given by Eq. (3) but with
St2~(q) replaced by the lattice Fourier transform of
the exchange integral J(q). Indeed, St '(q),
although defined in fully itinerant terms by Eq. (2),
may be interpreted as an effective interaction energy
between the moments at i and j.

The above account of the magnetization fluctuations
is only the first half of the theory. The second half
deals with the calculation of h,

M" and S»t2) on the basis

lapses the interaction between moments changes from
ferromagnetic to antiferromagnetic.

The DLM picture of Cyrot, 9 Hubbard, '0 and
Hasegawa" has been reformulated in the language of
spin-density-functional (SDF) theory by Gyorffy et
al. '2 In this theory the electrons are treated within the
LSD approximation but, instead of the usual FM or
AFM case where all the unit cells are forced to be the
same, an ensemble of states, whose spin polarization
varies from site to site, is studied. The orientation of
the spin polarization in the ith unit cell is depicted by
the unit vector e& and an orientational configuration is
described by the set {e;}.The grand potential for the
electron system whose spin polarization, averaged over
each unit cell separately, is constrained to point along a
set of prescribed local directions, {ei}, is denoted by
0 ({i,}) and the total electronic free energy is written
as F= —P ' lnZ, where

Z = II,J d2e; exp [ —p 0 ( {e;} ) ]. (1)

In principle, 0 ({e;}) is to be calculated for each
configuration by use of the LSD approximation. For-
tunately, in the mean-field approximation for the sta-
tistical sum in Eq. (1), it is sufficient to evaluate the
average of 0 ( {e,}) with respect to the inhomogeneous
product distribution function P( {ei}) = fJ,Pi(ei). The
situation is particularly tractable in the paramagnetic
state where, without loss of generality, e, may be tak-
en to be an Ising-type variable pointing only up or
down, e f= +1. Then P, (ei') may be parametrized by
the average m&

= (e;) as follows: Pi(e;) = —, (1
+ m, F). Evidently, ( 0 ( {e;)) ) is now a function of
m, . Two central results of the theory are that the
Weiss molecular field h;M" and the spin-spin direct
correlation function S»2~ =—8 hlM"/8 m, are given by

S(2) i)'(~)
(2)

am, rlmj 1,
1'

of the SDF theory. Since the local orientations, e,',
are to be regarded as independent random variables,
the average (0) may be calculated by use of the well
known mean-field theory of disorder, namely the
coherent-potential approximation (CPA). The rele-
vant muffin-tin, charge self-consistent version of this
Korringa-Kohn-Rostoker or KKR-CPA scheme was
first used in the present context by Pindor et al. ' and
Oguchi, Terakura, and Hamada. '~ Yet again, in the
spirit of the mean-field theory, one begins with the
construction of the partially averaged, spin-dependent,
local potential ~ (r —R;;e ) which depends only on
the local random variable e,'. It is calculated with the
von Barth-Hedin version'5 of the LSD approximation.
Then the corresponding Kohn-Sham equations are
solved for the partially averaged Green's functions
(G (r, r;e))... by means of the KKR-CPA. From

(G, (r, r;e))... the partially averaged charge densi-

ties p (r;e, ) are determined. This procedure is re-
peated until convergence in u . The local moment is
given by

P= pii„„d'r[pt (r;ei') —pt (r;e,')],
0

where Qo is the unit cell. To find S' '(q) one must
consider a weakly inhomogeneous version of the
above CPA scheme. In fact, S»t2~ turns out to be a
fairly typical linear-response function satisfying a
Bethe-Salpeter-type integral equation. " In the calcu-
lations we shall report that we have solved both the
self-consistent KKR-CPA problem for the local mo-
ment p, and the integral equation for the response
function S'2~(q) including all the matrix elements. To
render the computations tractable we have worked at
complex energies making full use of the extensive and
powerful analytic properties of multiple-scattering
theory. '6

In the above DLM picture the dominant tempera-
ture dependence is due to the factor P = I/ka T in the
denominator of Eq. (3). It is the consequence of the
entropy of the orientational fluctuations. However, p,
also depends on temperature through various Fermi
factors. This effect is due to the entropy of thermally
excited electron-hole pairs and, at the temperatures
where we worked, is relatively insignificant. There-
fore, in calculating p, we have treated all the Fermi fac-
tors as step functions. On the other hand, in the calcu-
lations of St2i(q) all the electron-hole pair effects
were treated properly by our summing over the ap-
propriate Matsubara frequencies numerically.

Our results for the local moments are indicated by
crosses in Fig. 1. Note that, in general, the size of p,

depends on the orientation of the environment. While
in the FM state all nearest neighbors are parallel, in
the type-I AFM state (CuAu structure), used in Ref.
7, there are eight parallel and four antiparallel nearest
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neighbors. In the DLM state the most common
nearest-neighbor environment is six up and six down.
Thus, in general, p,

LM should be quite different from
p, "M but close to p,A™.As is clear from Fig. 1, this is
in fact what we find. The remarkable agreement
between our DLM results and the AFM moments of
Wang etal. should be taken as evidence that the
DLM picture, when implemented within the frame-
work of SDF theory, can yield quantitative results
which are directly comparable to those for ordered
orientational arrangements.

Having confirmed that the local moment on fcc Fe
collapses as the lattice parameter shrinks from 7.0 to
6.6 a.u. , we now go on to study the nature of the in-
teractions between these moments. We do this by cal-
culating the wave-vector-dependent static susceptibili-
ty X(q) using the mean-field theory outlined above.

Anticipating that the small moments of fcc Fe, like
those of Ni, will not be rigid, we have used a more
general formulation of the problem than the argu-
ments leading to Eq. (3). It allows the local moment
to change in response to both the external magnetic
field, directly, and the change in the environment due
to the increased number of up moments produced by
the external field. An outline of this theory has been
given by Staunton et al. '

The results of our calculations of X(q), along the
[111] direction, for various lattice spacings and at
T = 1400 K, are shown in Fig. 2. For each value of the
lattice parameter, we also show p, /3ka T which is both
the high-temperature limit of X(q = 0) and the suscep-
tibility of the noninteracting moments. Evidently, any
deviation of X(q) from this constant value should be
interpreted as being due to correlations between the
moments. A maximum at q = 0 implies that the
paramagnetic state is potentially unstable to spontane-
ous formation of a uniformally magnetized state.
Namely, as the temperature is lowered this peak will

grow to infinity at a temperature T, where a phase
transition to a ferromagnetic state occurs. A max-
imum of X(q) elsewhere in the Brillouin zone implies
incipient antiferromagnetic phases. These may be of
different kinds. Type-I antiferromagnetism is associat-
ed with the Lifshitz special point's qo = (2~/a) (1,0, 0)
and its star. It consists of alternating ferromagnetic
(100) planes of opposite polarizations. On the other
hand, type-II antiferromagnetism is signaled by an in-
stability at qo = n/a (1, 1, 1) corresponding to alternat-
ing [111] ferromagnetic planes of opposite polariza-
tion.

Clearly, the most striking feature of Fig. 2 is the
shift of weight from q = 0 to finite q as the lattice
parameter, a, is reduced. This we interpret as a reflec-
tion of the fact that the magnetic correlations are
changing from ferromagnetic to antiferromagnetic.
Indeed, at a =6.7 a.u. the maximum is at the zone

X (g, T = ~coo j&o

P/3k|s T

12

P/3k' T

boundary. Moreover, calculations for several direc-
tions were performed, which are not reported here,
and the special point (m/a)(1, 1, 1) is the absolute
maximum. This suggests a low-temperature phase
with type-II magnetic structure.

In Fig. 1 we indicate the range of lattice constants
for which y-iron exists at high temperatures. For
these values of lattice parameters Brown et al. '9 stud-
ied X(q) in neutron scattering experiments, using po-
larization analysis. We note with interest that they
found the forward scattering peak in X(q) much
broader in fcc than in bcc Fe. Comparing the results
reported here with those of Staunton et al. '7 for bcc Fe
we observe the same effect.

This research was sponsored in part by the U.S.
Department of Energy under Contract No. DE-AC05-
840R21400 and by the Science and Engineering
Research Council of Great Britain.
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FIG. 2. The static susceptibility X(q) at T=1400 in the

[ill] direction for fcc Fe at 7.0, 6.9, 6.8, and 6.7 a.u. For
q & qqz the computational difficulties are such that no de-
finite conclusion is possible as to whether the center of the
main peak is at q=0 or not. For the sake of our discussion
we have assumed it to be at q = 0.
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