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A density-functional-based theory is developed for calculation of the total energy and pressure of
random substitutional alloys within the Korringa-Kohn-Rostoker coherent-potential approximation.
The theory is used to calculate the concentration variation of the equilibrium lattice spacing of o.-

phase Cu, znl, alloys. %e find, in agreement with experiment, that the variation is almost linear
and that it deviates from Vegard's rule.

PACS numbers: 71.25.pi, 61.55.Hg

In the modern world metallic alloys are used in an

enormous variety of applications. The reasons for this
ubiquitous use revolve around the possibility of modi-

fying their properties —strength, ductility, corrosion
resistance, thermal and electrical properties, etc.—to
meet specific engineering requirements. Because most
commercial alloys are complex multiphase mixtures, it
is important that the phase relationships and the
mechanisms responsible for phase stability be under-
stood at the most basic level. At the microscopic level
this means parameter-free theoretical models which
treat, on an equal footing, all of the possible alloy

phases that can occur: pure metals, possible ordered
intermetallic compounds (stable and unstable), and
possible disordered solid solutions.

During the last few years it has become clear that
density-functional theory' (DFT) in the local-density
approximation (LDA) provides a sound, ab initio,

theoretical basis for calculating the ground-state prop-
erties of pure metals3 and ordered compounds. . Con-
sequently, DFT provides a logical starting point for a
general theory of alloy phase stability provided it can
be extended to the calculation of the total energy, etc. ,
of the relevant disordered solid solutions.

In this Letter we present expressions for calculating
the total energy and pressure of random substitutional
alloys. They are based on DFT and the self-consistent
Korringa-Kohn-Rostoker coherent-potential approxi-
mations (KKR-CPA) method for calculation of the

electronic structure of random alloys. Furthermore,
we show results for the concentration dependence of
the equilibrium lattice spacing of n-phase Cu, Znt
random alloys using the new expressions.

The DFT rests on the theorem that the total energy
E[p(r)] is a unique functional of the electron density
p(r) and that the minimization of E[p(r)] with
respect to p(r) leads to a set of single-particle-like
equations, the self-consistent solution of which gives
the ground-state charge density and energy. For or-
dered systems, solving of the DFl' equations (in the
local approximation) is straightforward because the ef-
fective electron-ion potential V(r) is local, and the
underlying translational symmetry allows the use of
modern high-speed band-theory algorithms for solving
the Schrodinger equation.

The applicability of DFT is not, in principle, affected
by the loss of translational symmetry in random alloys.
However, two major obstacles render a direct solution
intractable. First, the effective potential V(r, I(; I) is
not periodic since it depends on the particular alloy
configuration (specified by a set of site occupation
variables (;). Second, experiments measure config-
urationally averaged properties. The straightforward
approach to the calculation of such averages would be
to calculate the property for each member of an en-
semble of alloy configurations and then to average
with respect to the probability of occurrence P([(;I)
of that member of the ensemble. Thus the configura-
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tional average (E) of the total energy is (E)
= QP(l(;I)E(l(;)) where the summation is over all

possible configurations compatible with the concentra-
tions of the alloying species. Obviously„an alternative
path must be sought.

The modern ab initio theory of the electronic struc-
ture of random alloys is based on the KKR-CPA
method. 5 6 The relative simplicity of the KKR-CPA
method springs from the fact that it is a theory of the
configurationally averaged properties themselves. The
Hamiltonian, on which the method is based, is for a
random array of nonoverlapping muffin-tin potentials
u (r —R, ) centered on the lattice sites R, , there being
as many different kinds of muffin-tin wells as there are
atomic species n. The essence of the CPA is to re-
place the random array of real muffin-tin wells u by
an ordered array of effective wells u, . The scattering
properties of u, are then determined self-consistently,
in a single-site mean-field sense, from the requirement
that an electron traveling in an infinite array of u, 's
undergoes, on average, no further scattering upon re-
placement of a single u, potential with the u poten-
tials. Once the scattering properties of a single u, are
known, such quantities as species-decomposed average

I

densities of states n (e) and charge densities p (r)
can be calculated straightforwardly. 7

The self-consistent KKR-CPA method makes the
partially averaged charge densities p (r) consistent
with the potential functions u (r). In keeping with
the single-site nature of the CPA, u (r —R;) is regard-
ed as being an appropriate single-site average potential
and is obtained by associating with each site i the nu-
clear and electronic charge densities Z5(r —R;) and

p (r —R;) and by averaging over the occupancy of all

other sites j~i, i.e. , associating with them the average
nuclear and electronic charge densities

Z&(r —Rj) = X,c Z 5(r —R,.)

and p(r —RJ) = g c p (r —Ri). In the interstitial
volume Qo the potential is fixed by taking the intersti-
tial charge density po to be a constant pa= a c po
where

poQO
——Z —„dr 4~r'p (r),

rMT being the radius of the muffin-tin sphere. Setting
the interstitial potential to be the zero of energy thens
glVCS

r
'I

+8m„d'rt rt ——= p (ri)+pl dri rtp (ri) +p,„,(r;p ) —p, „,(po)+ —poQO,
fl a

where C is a constant that depends on the crystal struc-
ture, 3 a is the lattice spacing, and p, „, is the LDA
exchange-correlation potential. 9

The above self-consistent KKR-CPA method has
been applied to a number of alloy systems with consid-
erable success. '0 These results, taken together with
the results of earlier, non-self-consistent calculations, 5

lead to the conclusion that the method may be of suffi-
cient accuracy to allow for the calculation of total ener-
gies, etc. However, the difficulty with the method is
that the self-consistency step (and, therefore, the vari-
ational step in DFT) and the configurational averaging
stc
has
tlO

gY
1A a
Jul

etc. , using the KKR-CPA. Given this situation, in the
following we take a different tack. We begin from the
self-consistent formulation of the KKR-CPA and show
that an expression for the total energy can be derived
that is consistent with the KKR-CPA and that the en-
ergy expression satisfies many of the conditions usual-

ly associated with DFT, e.g. , stationarity.
We begin with Maxwell's relation N(p, )

= —(80j8p, )Tv between the grand potential 0 of
the electron system, the number of particles N(p, ),
and the chemical potential p, . By recalling that

p are inextncably mixed together. Consequently, it
not yet been possible to begin with the DIT equa- N(p, ) =„den(~) f(e —p, )

ns for the configurational average of the total ener- ~he~e f(~ &);s the Ferm, f„„ct,on and „(~);sthe
and to derive a set of self-consistency equations that density of states, we may integrate with respect to p, .

faking the zero-temperature limit and averaging over
re the calculation of single-site charge densities, all configurations, we obtain the starting expression for

the configurationally averaged ground-state energy":

Z QN(e;p, ')F( V, p, ) —p, N(p. ) = X —) de N(e;p, )8(p—e)+ J~ dp,
'

,
' de ' 8(p, ' —e), (2);, IR, —R, l

—oo ~ —oo

N(~;p, ) =No(~) —~ 'Im~»lli, ' —gll+X. c.inlli+(i. ' —i, ')r'lli,
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where N(~;p, ) denotes the configurationally averaged integrated density of states per site. For orientation we note
that the first term in Eq. (2) is the sum of the single-particle eigenvalues, and the second is the double-counting
correction.

Within the KKR-CPA, N(~;p. ) is given by'2
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r, -, B~ (r)d«Xc n (~)&(p. —~) —
J d'r J dp, 'Xc p (r) e(p. —p, ').

OO
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z2 goo

F. =
&, IR; —R, I
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If we take for v (r) the muffin-tin potential Eq. (1), E
can be written in the form

(4)

and that upon concentration averaging, the surface
terms cancel. They vanish for a pure metal by Gauss's
theorem.

In order to test the above formalism we have applied
it to the study of the concentration variation of the
equilibrium lattice spacing of the Hume-Rothery alloys
Cu, Zni, . In these calculations we used the ex-
change-correlation potential of Hedin and Lundqvist. 9

In Fig. 1 we show the calculated equilibrium lattice
spacing of n-phase Cu, Zni, alloys having c=1.0,
0.9, 0.8, and 0.7. The equilibrium was located by find-
ing that lattice spacing for which the pressure is zero.
Also shown in Fig. 1 are the measured room-
temperature values'5 as well as calculated values for
Cu05Zn05 and pure zinc for an fcc lattice.

Over the concentration range of the n phase
(c &0.7) we obtain an almost linear concentration
variation of the lattice spacing. For higher zinc con-
centration we find a small departure from linearity. In
the ~ phase the initial slope is 0.0045 a.u. /at. '/o; at
room temperature the experimental value is 0.0042
a.u. /at. %. Taking the experimental value for zinc in
the hcp phase and converting that to an equivalent fcc
lattice spacing gives 7.352 a.u. Vegard's rule'6 of as-
suming the lattice spacing to interpolate linearly
between the pure metals gives a slope of 0.0054
a.u. /at. '/0. The negative departure from Vegard's rule
seen in the o. phase is well reproduced by the theory.

E= X, c E'(p, po), (5)

where E' is an expression of the same form as that ob-
tained by Janak [see Eq. (25) of Ref. 13] except that
the pure metal muffin-tin and interstitial charge densi-
ties p(r) and po are replaced by p (r) and po.

Equation (5) is an appealing result for several
reasons. First, once a self-consistent KKR-CPA calcu-
lation has been performed, an accurate evaluation of
the total energy is straightforward and all of the subtle
single-particle/double-counting cancellations effected
in Janak's'3 original formulation apply. Second, in the
pure-metal limits, Eq. (5) reduces to Janak's expres-
sion. Third, the simple form of the total-energy ex-
pression is due primarily to the fact that, within the
CPA, N(e) is stationary with respect to variations in
t„'4 and thus the mean-field potential reconstruction
method embodied in Eq. (1) and the mean-field CPA
condition for determining t„etc., have meshed to-
gether to produce a simple result. However, it should
be noted that the particular choice of the interstitial
charge density is also of importance in obtaining cer-
tain cancellations leading to Eq. (5). Fourth, Eq. (5)
appeals to the intuition and can, in fact, be obtained by
consideration of a particular average of the Coulomb
energy of the component charge density. The pro-
cedure is similar to that described above in connection
with selection of the muffin-tin potentials. Such an
approach, however, obscures the connection to
Maxwell's relation and the role played by the CPA in
the maintaining of internal consistency. Finally, the
current formulation has a number of important proper-
ties in common with standard Dl t. It can be shown
that E is stationary with respect to independent var-
iations in the component charge densities, i.e. ,
&E[pz, pz, . . . ]/&p (r) =0, and that the functional
derivative of the potential energy with respect to p (r)
returns the potential v (r).

In a similar manner we may also obtain an expres-
sion for the configurationally averaged pressure P
within the KKR-CPA formalism. The result is

o 7.2

7.3

7.0
C3
l—

6.9

where t and i, are t matrices corresponding to v and v„g is the matrix of real-space structure constants, and r,
is the diagonal part of the total scattering operator for an ordered lattice of v, 's. The underscore denotes matrices
in both the angular momentum variable L = (I,m) and the site index n, and ( )@~ ) denotes the determinant. By use
of Eq. (3), Eq. (2) may be recast as

P= X, c P~[p, po] (6)

where, once again, P' is the expression of Janak [see
Eq. (24) of Ref. 13]. We note that the partial pres-
sures P may be obtained as P = P' + (surface terms)

i l l l l l l
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FIG. 1. Concentration variation of the lattice spacing of
o. -phase Cu, Zn~, alloys. Calculated: solid circles. Experi-
mental: open circles.
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Use of the room-temperature lattice spacings in Fig.
1 makes the agreement between theory and experi-
ment appear better than it is. With use of the calculat-
ed and measured values3 of 6.895 and 6.809 a.u. for
copper at T =0 K (cf. 6.832 a.u. at 300 K) the error is
1.3%. The major part of this discrepancy is due to the
truncation of the angular momentum summations in
our calculations at l = 2. For copper, inclusion of I = 3
and 4 terms gives an equilibrium lattice spacing of
6.767 a.u. ,

3 which is within 0.6% of experiment.
Presumably, inclusion of these terms in the KKR-CPA
will result in a similar residual error. The absolute er-
ror notwithstanding, we view the agreement between
theory and experiment pleasing, this being the first ab
initio calculation of the lattice spacing of a random al-

loy.
Preliminary calculations of the heats of mixing AE

= E —eE "—(I —c)Ez" where E " (Ez") is the
ground-state energy of Cu (Zn) are also encouraging.
They are negative and of the correct order of magni-
tude. For example, near the limit of room-tem-
perature solubility (c=0.3), iJ.E= —3.8 mRy, which
is roughly one-half the experimental value. However,
without the inclusion of the higher angular momen-
tum components, we do not regard them to have fully
converged. We are currently including these addition-
al contributions and will give a full report of the results
elsewhere.

In this Letter we have extended DFT to treat the en-
ergetics of random substitutional alloys within the
KKR-CPA. The theory of the ground-state properties
of random alloys is now on a sound footing, compar-
able to that for pure metals and ordered alloys. Conse-
quently, it should be possible to contemplate ab initio
studies of alloy formation, of alloy phase stability, and
of the forces which drive ordering processes in alloys.
The theory is applicable to alloys containing any
number of components, and is straightforward to gen-
eralize to multi-sublattice crystal structures, or to
treatment of alloys that are magnetic by means of the
local spin-density approximation. '7 Since the theory is
a mean-field theory of the electronic structure and is
easily extended to finite temperature, it also fits logi-
cally into a mean-field theory of the statistical mechan-
ics of alloy configurations. '8

The strength of this formulation is the internal con-
sistency of its components, i.e. , Maxwell's relation,
the CPA, the muffin-tin potential, the total energy,
and the pressure. The results here are particular to the

CPA and the muffin-tin Hamiltonian. It may be possi-
ble to apply these methods to alternative Hamiltonians
or averaging schemes, e.g. , tight-binding CPA; howev-
er, great care should be taken to insure that the con-
sistency of the theory is maintained.
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