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Scale Invariance and the Group Structure of Quasicrystals
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%e define a set of generalized symmetries for quasicrystals and find that this leads naturally to
the operators which generate scale transformations ("infiations"). Our methods are applied to 2D
fivefold-symmetric patterns, but generalize to other point groups and dimensions.

PACS numbers: 61.10.Dp, 61.14.Dc

The unusual geometry of quasicrystals gives rise to
symmetries which are not present in ordinary crystals.
In particular, there is an arbitrariness in the choice of a
basis for scattering space in the quasicrystal case which
is not available for crystals. We shall call these "gen-
eralized symmetries" to distinguish them from the or-
dinary point-group symmetries. Understanding these
operations is important since they should be as useful
in the study of physical properties of quasicrystals,
e.g. , the electronic wave functions, as they were in
one-dimensional Fibonacci lattices. In this paper, we
shall enumerate all possible transformations of a quasi-
crystal and its diffraction pattern which generate the
generalized symmetries defined below. For crystals,
this enumeration gives only the usual point-group
operations, but for quasicrystals it leads to additional
transformations, which in the cases we have con-
sidered correspond precisely to the scale iransforma-
tions and reprojections which have been displayed pre-
viously by others. 2 4

For the purposes of this paper, we define a "quasi-
crystal" as a crystal-like pattern with a point-group
symmetry which is incompatible with translational
symmetry. ~ 8 While we illustrate our calculation for
2D patterns with fivefold symmetry, the methods are
applicable to any translationally forbidden point-group
symmetry. Our preliminary calculations for D7 in 2D

and for the icosahedral group in 3D convince us that
the present method generates all interesting operations
for translationally forbidden point groups.

%e begin by analyzing the scattering pattern from a
quasicrystal with fivefold symmetry [Fig. I (a)]. This
pattern is similar to the Fourier transform S(q) of a
set of delta functions at the vertices of the solid pat-
tern in Fig. 1(b). S(q) is actually a dense collection of
delta functions at the scattering wave vectors q; only
the major peaks are shown in the figure. '6'~t2 Each
q can be labeled by an n 6 Z' (the set of all integer
quintuples), where q(n) = gJ —Q ttJGJ with t GJ } a set
of fundamental vectors pointing to the vertices of a
pentagon. 3 4'o However, the GJ's are not all indepen-
dent since $~4 oGJ =0, so we work instead with four
basis vectors and label q by n 6 Z:

q(n) = R «JGJ. (I)
J=l

The correspondence between the q's and the points of
Z4 is now one to one. " We shall often refer to Z4 as
the indexing space. Since the set (GJ }t(J(4 is linear-
ly independent over the integers, the equality
q(n) +q(m) =q(p) is true if and only if n+m= p.
Thus the group Z" (quadruples of integers with addi-
tion) is isomorphic as a group to the set I q(n) } with
vector addition. In general, the dimension of the in-
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FIG. l. (a) The scattering pattern from the vertices of the solid pattern in (b), with spot area proportional to S(q); (b) a
quasicrystal pattern (solid lines) and its image after transforming by 5 (broken lines); (c) the plot of (a) after transformation
by P.
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dexing space can be taken to be the minimum number
of rationally linearly independent vectors required to
span q space. In 2D, the vectors representing the mth
roots of unity form a basis for an m-fold symmetric
pattern. From number theory wc know that the
number of rationally linearly independent m th roots of
unity is equal to the Euler number of m, E[mj, which
is the number of integers less than m which are rela-
tively prime to m. It therefore follows that the index-
ing space has dimension E [m f.

The largest point group that leaves both Figs. 1(a)
and 1(b) invariant is D5, the dihedral group of order 5,
which contains five rotations through integer multiples
of 2n/5 and five reflections, one across each image of
the x axis. D5 has two generators which wc can choose
to be 75, a rotation by 2n/5, and a., the reflection
x x, y —y. Instead of transforming the q's
directly, we operate on the points n of the indexing
space Z4 by 75(q(n)) =q(M(~5)n), where M(7q) is

the representation of ~5 in Z, and similarly for o.
These operators are

000
100

M(T )5= 0 1 0
001

0001
0010

M(o') —
0 I 0 0 ~ (2)

1000
This is easily verified if one remembers that
Go= —XJ'- i GJ

The indexing scheme (1) is clearly not unique, but
depends on the basis [G&) chosen for the scattering
space. An acceptable basis must have the property
that all integer linear combinations of the basis vectors
span q space in a one-to-onc manner. For a crystal,
the basis vectors must therefore be chosen to be a sub-
set of the shortest scattering vectors. However, quasi-
crystals have a dense set of scattering spots, so no such
fundamental set of basis vectors is picked out, and the
choice of an acceptable basis is somewhat arbitrary.

We can therefore ask what transformations of Z4 in-
duce acceptable basis transformations of q space.
These transformations are symmetries in the sense
that they leave the positions of the points in scattering
space invariant, although they may permute the
scattering intensities associated with those points. %e
therefore call them generalized symmetries, and label
the set of such operations H. H would, for example,
transform between indexing schemes which used dif-
ferent sets of fundamental scattering vectors to index a
scattering pattern.

%c shall now construct H. These transformations
must generate one-to-one mappings of Z4 onto itself,
since both before and after the transformation, each
point of Z should be associated with a unique scatter-
ing vector. %c also require that 8 preserve addition
of the q's, i.e., that the sum of the images of two vec-

—110
0 0 1

M(')= —I 1 0
—101

0

0—1 0 0
0

M(~, ) =

0

—1 0 0
0 —1 0
0 0 —1

tors under H gives the image of the sum of the two
vectors, which restricts H to be linear. Thus H must
be automorphisms of Z4 (one to one and preserving of
addition), and therefore be a subgroup of GL4(Z),
the 4x4 matrices with integer entries'4 and deter-
minant + 1.

%e further demand that H preserve the original
point-group symmetry of q space. This requires that
the images under H of two scattering vectors which
were related by a point-group operation in the original
pattern should again be related by a point-group opera-
tion. Explicitly, if qi = dq2 for some d & D5, then after
transformation by h E H, we must have hqi ——d'hq2,
d' 6 D5, ~here d' may depend on d and h. This leads
to the condition:

hdh '=d' or AD5h '=D5.

The group H~ of all h s which satisfy this condition is
called the normalizer of D& in GL4(Z); it is the largest
subgroup of GL4(Z) which has D5 as a normal sub-
group. " We therefore require that H L H~.

Depending on one's interests, it can be useful to
constrain further the definition of a generalized sym-
metry operation. For example, we can require that
d = d . This requirement is appealing since it removes
the possibility that H reorders the basis vectors. The
resulting group, Hz, defined as the set of operations
h & GL4(Z) satisfying hdh '= d, is called the central
izer of D5 in GL4(Z), or the largest subgroup of
GL4(Z) which commutes with D5.

Since reflections do not commute with rotations, Hc
does not even contain the full symmetry group D5,
and so we define a group Hp, the product of D5 and
Hc, by augmenting the generators of Hc by the gen-
erators of D5. This condition is equivalent to requiring
that d' in (3) be conjugate to d, so that Hp is defined
by the elements h E GL4(Z ) satisfying hdh ' = ddd
for all d and appropriate d 6 D5.

The four groups H~, Hp, Hz, and GL&(Z) satisfy
Hc L Hp 2 Hy & GL4(Z). The point group D& is
contained in Hp, but not in Hc. Computing these
groups is straightforward; we state the results below.

The centralizer Hz is generated by two elements 5
and T2.'
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The operation r2 is an inversion (rotation by m) and 8
replaces the scattering basis vector GJ by GJ
+ GJ +, , which is a rescaling of Gz.

Finally, we introduce two additional operators
1

1 —1 0 0010
1 0 —1 10000, M(P) =

() () ()

1 0 0 0100

(5)

Hp is obtained by adjoining the generators of Ds given
in Eq. (2) with the generators of Hc. We can take the
generators of Hp to be rip, 5, and o.. The normalizer
Hz requires the additional generator P, which replaces
GJ by Gt21&, where the angular brackets mean modulo
five. To summarize, the generators Gen(H) are
Gen(Ds) = «rs o } Gen(Hc) = (5 r2}, Gen(Hp)
= (5, rio, o ), and Gen(H~) = {5,P, 7 io, o ).

Choosing Ds as our fundamental symmetry group
was somewhat arbitrary. We could have chosen Dio
since the scattering pattern has tenfold symmetry, or
we might have excluded reflections. An appealing
feature of our procedure is that the nontrivial elements
5 and p will result from any of these choices. Which
symmetry group we start with can be chosen for calcu-
lational convenience.

Having constructed the symmetry operations 8 and

p, we can ask how they act on S (q) and a real-space
quasicrystal pattern. For our purposes, we consider a
quasicrystal pattern, or "tiling, " T as the set of points
T = (p(n) n q (~p) } where p(n) = yP & nJGJ [cf.
Eq. (1)] with GJ dual" to GJ and (Np } a subset of Z~.
The operator 5 acting on S (q) replaces the basis vec-
tor GJ by G~l il +G&i+i& =rGJ, which rescales all
the q's by a factor r = 2 cos(2n/5) = (JS—1).
Transforming T by 5 results" in

The new pattern, shown as dotted lines in Fig. 1(b), is
similar to the original solid pattern but with a trans-
formed length scale, and the vertices of the original
pattern form a subset of the new vertices. Thus 5 gen-
erates the inflation transformations described previ-
ously by many authors.

We say a lattice is scale invariant if a transformation
which maps the vertices of the pattern to a subset of
the original vertices is an automorphism of the index-
ing space, and therefore preserves the geometry of q
space. (Notice that simple magnifying of a regular
crystal lattice would not be an automorphism of index-
ing space. ) Our definition of scale invariance is less
restrictive than that derived by inflation rules, since
we do not consider tile decorations and other proper-
ties special to the so-called "Penrose" patterns. %e

believe that our definition is a more general feature of
quasilattices than inflation rules. Circumstantial evi-
dence suggests that scale transformations which have
the special properties of inflations occur only when the
dimension of the index space is precisely twice the or-
dinary spatial dimension, e.g., in 2D patterns with

point group D, when E[m]=4 (m =5, 8, 10, 12),
and for the icosahedral group.

The inflation symmetries for the reciprocal lattice
are obtained solely from the dimensionality and point-
group symmetry of the pattern. Incorporating the
structure factor of a real crystal can lead to extinctions
of S(q) for subsets of the (q}, which can lead to a
higher degree of inflation symmetry than derived
here. 2

Having constructed all operators which obey our re-
strictions, we have sho~n that 5 is the only generator
of scale transformations for this pattern. In the cases
we have looked at (Ds, D7, D8, and the icosahedral
group) the generators in the centralizer which are not
in the point group can be interpreted as scale transfor-
mations.

We now turn to the dramatic effect of transforming
S(q) in Fig. 1(a) and the solid pattern in Fig. 1(b)
with the element P. The pattern S'(q(n) )
= S (q(M(P)n) ) is plotted in Fig. 1(c). The scatter-
ing peak intensities have been systematically reor-
dered. The image under P of the quasicrystal pattern
is even more dramatic. Every point in the entire infi-
nite pattern is mapped into a compact domain: the in-
terior of two pentagons centered at the origin and ro-
tated relative to each other by 2n/10 We sha. ll explain
the action of p below, in terms of the projection
method of generating quasicrystal patterns. 7 '0 '2 '6

Since we index all vectors in T and S (q) by quadru-
ples of integers, we can think of S (q) and T as func-
tions defined on a 4D lattice. We can then consider a
figure such as Fig. 1(a) to be a projection of this 4D
structure onto a particular 2D subspace, where the
projection of each basis vector ei, . . . , e4 C R4 in the
4D space onto the 2D subspace is precisely
Gi, . . . , G46R

We define the vector "conjugate" to q(n) by

q(a) = $ nJG(2~)

From Eqs. (1) and (5), we see that q(q)
=q(~(p)n). The direct sum q S q forms coordi-
nates for the 4D space 8, with basis vectors
eJ = GJ 6 G &21l. Figure 1(b) represents the projec-
tion of the 4D pattern onto the 2D subspace q 6 0,
whereas transforming the pattern by p reprojects it
into the conjugate space 0 S q. A complete descrip-
tion of the scattering from a quasiperiodic pattern re-
quires both coordinates q and q, so that results from
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scattering experiments should be plotted' both as
S(q(n)) and S(q(q)). We can similarly define a
conjugate space p(n) for T using the same procedure
with q replaced by p and GJ by GJ. (The coordinates
p and p were called x~~ and x in Ref. 10 and u and v
in Ref. 4.)

In the conventional projection method of producing
quasicrystal patterns, a point of the 5D cubic lattice is
projected into p space only if its projection into the
space perpendicular to p falls into a compact "accep-
tance" region. Our coordinate p corresponds to a 2D
subspace of the perpendicular space. Since the opera-
tion p reprojects the points of the quasierystal pattern
into the perpendicular subspace, P maps the entire
quasicrystal pattern into a compact domain determined
by the projection of the 5D acceptance region into the
2D subspace p. We note that in many cases it is con-
venient to project from a space whose dimension is
larger than the minimal dimension of the indexing
space. To generate Penrose patterns by projection
from a 4D lattice, we must project from a noncubic lat-
tice.

Plotted as a function of q(q), S(q) is continuous. "
(This will not be true if the vertices have nonzero
structure factors. ) This suggests that any experiment
which is sensitive to the lattice structure in reciprocal
space should have data plotted as a function of both q
and q. Gaps in the phonon spectra and eigenstates of
Schrodinger operators should also be viewed as func-
tions of these two pairs of 2D coordinates.

Our symmetry arguments outlined above can be
generalized to other point groups and dimensions. For
3D icosahedral patterns, the point group Ds is replaced
by I, the icosahedral group, and GL4(Z) is replaced by
GL6(Z). A matrix similar to 8 has been previously
displayed for the icosahedral tilings by Elser2 and by
Katz and Duneau. '8

The extension to the point groups D in two dimen-
sions will be similar: D will replace D5 and GL4(Z)
will be replaced by GLg( i(Z). For m =7, we find
two generators of scale transformations.
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