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Order Electricity and Surface Orientation in Nematic Liquid Crystals
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A nematic liquid crystal should present an order electric polarization associated with the gradient
of order parameter, in addition to the flexoelectric polarization associated with the gradient of
orientation. Using thermodynamical arguments, we show that the order-electricity coefficients are
of the same order as the flexoelectric ones. The dielectric energy resulting from the order polariza-
tion can explain the unsolved problem of the spontaneous tilted orientation at the nernatic-isotropic
(or air) interfaces. The core of disclination lines can also present electric multipoles.

PACS numbers: 61.30.6d

A nematic liquid crystal is characterized by a tensori-
al order parameter QJ = S(n, nj ——,'8;~), of modulus S
and director n (n is a unit vector usually called direc-
tor'). At thermal equilibrium uniform textures of
nematic liquid crystals, i.e. , with uniform S and n, are
centrosymmetric by compensation and then are not
ferroelectric. Long ago, Meyer2 showed that by break-
ing this symmetry, bend or splay curvature distortions
can induce a macroscopic electric polarization Pf. P~,
proportional to the curvature of n at constant S, is the
well-known flexoelectric polarization. More recently,
the idea of inducing an electric polarization by forcing
a gradient of S at constant n was suggested by Prost
and Marcerou3 and applied to the problem of the
orientation of n at a nematic-isotropic interface. They
predicted that n should always align parallel to the in-
terface. This is not in agreement with the experimen-
tal data. ~ Faetti and Palleschi, for instance, have re-
cently measured the surface orientation of cyano-

!
derivative. 5 6 In heptyl cyanobiphenyl (2CB), n is

aH/a(S, ) =., =.„S,+L„„n,„+M„E,, aH/e(n„

eH/BE, = (I/4~)—D, =R,,S, +I „„n,„+(.„/4~)E, ;

using the usual Maxwell relations, we can write

found to make an angle of 52' with the surface nor-
mal. ' In this paper, we give the first complete analysis
of the order polarization connected with the spatial
variation of the modulus S of the order parameter in
nematic liquid crystals. As an application we show
how the surface orientation is connected with the or-
der polarization. We can explain quantitatively the ex-
periments of Faetti and co-workers. 5 8

We start by generalizing the thermodynamical argu-
ments of Ref. 2. We write the differential of the elec-
tric enthalpy density as

dH =v,d(S;) +gad(n i) —(I/47r)DdE, ,

where Gi=BG/Bx;. In (I) the first term takes into
account the new contribution to the spatial variation of
S. The second term represents the elastic contribution
from curvature elasticity and the last the usual dielec-
tric contribution (E is the electric field). We make a
linear expansion of the conjugate quantities v, , yi, , and
D; in terms of our independent variables as

) = yV = NvkSk+ uv kink i+~iIkE'»,

~ij rji ~ +ijkl eikIij ~ ejteji ~ Pijk Iii kij ~ Lijk NJ'ki ~ Mij Rji ~

rij is related to the L~ and L2 gradient elastic constants of the Landau-de Gennes free energy9; oi;,kI gives the cur-
vature Frank elastic constants'0 Kt~ 2 3~, e& is the usual dielectric tensor; i8;Jk and p, i&k give the flexoelectric coeff&-
cients2; L~k and Njk would give the (usually neglected) coupling between change of order and curvature; they
depend only on L2. Finally M,, and R J give the new "order" electricity effect. H becomes now

H =
2 7,JS;S~+ 2 u,~k(n; nki —(I/8vr)e, JEiEJ+L~~kS;nj k p. kjn; JEk —RJ, S—;EJ

In addition to the usual dielectric term, the electric polarization contains the two terms

Pf = e)n. divn —e3nx rotn, P0 = r ((n gradS)n+ rpgradS.

Pf is the usual flexoelectric polarization. P, is the order polarization. To obtain (5) we have decomposed iM, ;,k and
R,~ in term of tensors made with n~ and 5;~, using n, n~ = 1.

In this symmetry-based approach, the flexoelectric (e, , e3) and order-electric (r&, r2) coefficients seem uncon-
nected, and their temperature dependence unknown. In fact, the true variable which describes the spatial nematic
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behavior is Qj k, so that the H differential should have

been %fr ittcn as

dH = A,jk d(QJk) —(I/4m)D; dEr.

Following the above procedure, ~e obtain

(6)

1 1H =
2 B{jkjntsQim, nQij k eij EiEj Gijip+QjimEj ~

(7)
where Bijkj~„=Bj~k can be decomposed in the usual

way, gi~ing the well-known Landau-de Gennes free-
energy density. 9'2 Furthermore, in addition to the
usual dielectric term, the electric polarization is now

P =iGj jQji,

Giji can be expanded in terms of Q„" and 5&." To
second order in S, '2 we can write the flexoelectric and
order-electric coefficients as

and r2, expressed in terms of A i, A3, and e, are of the
same order as the flexoelectric coefficients. The only
new term is Bwhich, in absence of any measurement,
can be assumed to be comparable with A.

Order electricity must be present each time one
deals with a situation implying a spatial variation of S.
A good case is the interface between a nematic phase
and its isotropic phase, stabilized by a small tempera-
ture gradient. We neglect the associated transport
phenomena, assuming thermal equilibrium at the tran-
sition temperature T,. We make a one-dimensional
analysis along the normal x3 to the interface. Across
the interface, S must vary from Sp in the nematic
phase to 0 in the isotropic phase. We call 8(n, x3) the
polar angle of the director. In principle, 8 must also
vary through the interface, because of the coupling
between 8 3 and S3. We make for the moment the
usual uniform-8 approximation through the interface.
We consider the pure dielectric case

ei = AiS2+ eS, e3=A3S2+ eS,

ri = AS+ e, r2 = ——,
'

[
—(A + B)S+ej,

(9) D3 633 (8 ) E3 + 4ir ( ri cos 8 + r~) S 3
= 0,

where A = A i + A3.
The coefficient A i, A 3, and e are known from the

temperature analysis of the flexoelectric coefficients ei
and e3. ' We see that the order-electric coefficients ri

H = L(8)S', ,

where

(10)

because the Debye screening length is, in general,
much larger than the coherence length g. This gives

(ri cos28+ r2)2
L (8 ) = —,

'
L2 cos28 + —,

' (L, + ,' L2) +—
1 + (e,/ti)cos'8.

A standard calculation gives for the interfacial energy the value9'

~(8) = (-,' aLp(8)I'j'(T, —T)'»S2+ 0(S,'), (12)

where —,
' a ( T, —T)S2 is the first term of the de Gennes free energy. At equilibrium, y(8), and hence L (8), must

be minimum with respect to H. This leads to

,
3 2m 2 (e,/e, )ri cos'8ii + 2r, —(eg/e, )r,

L2+ (ri—cos Hp+r2) 2 2
sin28p ——0,

8 e, 1 + (tg tg cos Hp

which defines the mean interface orientation Hp Note.
that for L2=0 (i.e., in absence of 8 3 S3 coupling),
and close to the transition (S 0), Hp tends towards
the "magic" angle defined by cos28p= —,

' [see Eq. (9),
giving ri e and r2 —e/3]. Physically this corre-
sponds to simply minimizing the order-electric polari-
zation proportional to (P3) (and not P, as suggested
in Ref. 3). Close to the transition, a departure from
the magic angle should give a direct measurement of
L2, responsible for the difference, at T„between
ki=k3 and k2. For finite S, and L2 arbitrary, Eq.
(13), in the case, for instance, of a nematic-air inter-
face, gives the temperature dependence of 80. If the
bracket has no zero, Hp is 0 or m/2, according to de
Gennes's' prediction. If the bracket can become
zero, 80 depends on S, i.e., varies ~ith temperature. It
may be possible to find some temperature Tp where Hp

goes from one regime to the other one. Close to To, a

trivial calculation shows that Hp (or m/2 —Hp) will vary

according to ( T —Tp('j2.

We can now estimate the deviation 58=8 —
Hp

across the interface. We use the simplified Landau-de
Gennes energy, in the absence of flexoelectricity, for
the two-constants approximation. Writing $3= Sp/
2g, we obtain for 8 the equilibrium equation

3(Li+ —,
' L2)Sp28 33+ ,' L i 22s8n(S /2') 20, —

l.e.,

58 = IL2/[12(Li+ —,
' L2) ljsin28p. (14)

L2 is generally smaller than Li (see Ref 9); cons.e-
quently Eq. (14) shows that bH is usually small
enough for the uniform approximation to be valid.
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Knowing Ho, we can estimate y, and the surface anchoring energy W, defined ass 7 y, = y (Ho) and

(T, —T) ' ', ~ [r, —(e,/e, )r, j'
3

sin22Ho.
dH e, 4 L(HO) e~ [1+(e,/e~)cos2HO]3

(15)

This anchoring energy is of the order of W = e2SO~/(.
As e —K, we can write Was W= K/A. , where the
extrapolation length A. characterizing the anchoring
strength is k(T, ) —(/So. Using the classical Landau
mean field model, we can write immediately

crease of W far from T, .
Finally, we can describe other situations where order

electricity can be important. In the core of disclination
lines, S must go continuously to zero. The associated
order electricity must build intrinsic electric multipoles
on the lines. This contribution must be added to the
one already calculated for the distorted volume around
the core. Lines of order —,', for instance, should bear
a charge + eS and an electric dipole + eS( per unit
length, normal to the line, in the plane of symmetry.
One can also predict the existence of a potential differ-
ence between an electrode and the bulk, if the surface
order parameter is different from the bulk one. These
effects will be described in a forthcoming paper.

To conclude, we have generalized the idea of Meyer
on the flexoelectric polarization, associated with spatial
curvature distortion of the nematic. One can also as-
sociate an electric order polarization with the spatial
gradient of the modulus of the order parameter. The
associated order coefficients are the same as the flexo-
electric ones except for a new one to be measured.
Order electricity must be important close to bound-
aries, or disclination lines. In particular, we have
shown that the problem of director orientation at a
free surface can now be solved. In addition to the de
Gennes model, which predicted only molecular orien-
tation parallel or perpendicular to the interface, we can
explain the observed tilted orientation and its tempera-
ture dependence. In the simplest case, where the sur-
face energy is totally of electric origin, the molecules
align along the magic angle, to suppress the normal
component of the order polarization. In general, the
elastic anisotropy must also be taken into account and
allows for a different, and temperature-dependent,
surface orientation. More generally, we can predict an
intrinsic electric multipolar property for all situations
which imply a change of order parameter, for instance
in the core of disclination lines.

x ( T) —(0[ T,/( T" T) ]'l—',

3e)) L2 3a() L2A
cos Hp= —— +'

327r e2 16e3
2A+8

3e

which fits the data far from To (Ho= 35') and close to
To if we use the values e~~

= ~, = 5, e =0.5x10
cgs, A&/e=A3/e=B/e=0. 12, and L2(0 with
IL21= 1.5x10 6 cgs.

Note that the few measurements which give the L&
and L2 values'9 20 are based on the Landau-de Gennes
model, ignoring the large contribution from the order
electricity. These experiments should be reanalyzed to
give the correct values. Note, for instance, that in
Ref. 20 it is not possible to fit the data with a constant
L2. The temperature dependence of the surface angle
in MBBA appears to fit qualitatively with our model.
The last experiment to quote is the observation2' of a
free surface undulation under the application of a mag-
netic field. The surface distortion (instead of the
director tilt) is an obvious consequence of the large in-
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where T' —T, is of the order of 1'C and the bare
correlation length go compares with a molecular
length. 9 The surface anchoring must become very
strong far below T,.

Let us now compare these predictions with existing
data. First, consider the results from Refs. 5 and 6 on
the 7CB nematic-isotropic interface. Ho is 52.6'+0.6',
i.e. , the magic angle. This means that for 7CB, in the
limit of small S, the three curvature elastic constants
should be equal. This fits very well with the analysis
of the S dependence for this compound reported
in Ref. 8. Furthermore, assuming a =12x105 cgs, '5

L&
—10 —cgs, 9 T"—T, = 1'C, So = 0.25, '6

e = 5x10 4 cgs, '7
e~~

= ll, and e~ =7, '8 we can esti-
mate the interfacial tension 7, -—5x10 erg/cm .
The experimentally estimated value is 2 x 10
erg/cm, of the same order of magnitude. With the
same parameters, we estimate for the anchoring ener-
gy W = 5 x 10 erg/cm2. The two measured
valuess 6 are W = 1 x 10 3 erg/cm2 and W = 2 x 10
erg/cm', in reasonable agreement.

We now consider the case of MBBA (methoxyben-
zylidene butylaniline). Ha is found to become zero
within 1.2 K of T, (Ref. 8); it increases as ( To T)'/2—
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