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Analytic Theory of the Selection Mechanism in the Saffman-Taylor prohlem
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%e present an analytic approach to the problem of predicting the widths of fingers in a Hele-
Shaw cell. Our analysis is based on the %KB technique developed recently for dealing with the ef-
fects of surface tension in the problem of dendritic solidification. %e find that the relation between
the dimensionless width A. and the dimensionless group of parameters containing the surface, ten-
sion, v, has the form A.

——, —v ~' in the limit of small v.

PACS numbers: 47.20.Ky

The Saffman-Taylor" problem continues to play a
central role in current theories of pattern formation in
nonlinear dissipative systems. This problem of
predicting the shape of the fluid finger that forms in a
Hele-Shaw cell is similar in many respects to the prob-
lem of predicting the shape and speed of a dendritic
crystal growing in an undercooled melt. Pattern selec-
tion in both of these problems turns out to be con-
trolled by surface tension, an ostensibly small but
singular perturbation which converts an equation with
a continuous family of steady-state solutions into one
for which such solutions exist only for a discrete set of
values of some parameter, for example, the finger
width or the growth rate. Among those configurations
which satisfy such a solvability condition, there gen-
erally exists just one which can be identified as the
dynamically selected state of the system.

Almost all of the specific applications' of this sol-
vability principle that have been carried out so far have
required numerical solutions of the singular equations.
It seems to us that there is an obvious need for a more
analytic approach that might provide deeper under-
standing of the roles played by the various parameters
that enter into these theories. Some progress along
these lines has been made recently in studies of local
modelss " of crystal growth ~here there are no long-
range interactions between distant parts of the solidifi-
cation front or between the crystal and the walls of the
container. '2 The Saffman-Taylor problem, on the oth-
er hand, is fully nonlocal —so much so that the width
of the finger is determined by the width of the channel
in which it is moving, and the directional information
provided by the walls of the channel apparently plays a
role similar to that of crystalline anisotropy in the den-
drite problem. We therefore find it particularly in-
teresting to discover that the Saffman-Taylor problem
can be solved almost completely by analytic techniques
which are much the same as those which have worked
so well for the local models of solidification. Our pur-
pose in this note is to summarize briefly the strategy
that leads us to an asymptotic formula for the width of
the viscous finger in the limit of small but nonzero
surface tension. We promise a more complete report

in the near future.
Our starting point is the nonlinear integrodifferential

equation of McClean and Saffman3 (hereafter referred
to as MS). The system of interest is an effectively
two-dimensional channel of width 2a and thickness
b && a along which a fluid of viscosity p, is being
driven at velocity V by an immiscible second fluid of
relatively negligible viscosity. Both fluids are in-
compressible. The steady-state configuration of this
system is observed experimentally to be one in which
the inviscid driving fluid forms a finger of width 2ka
along the center of the channel; and the problem to be
solved is to compute X as a function of a, b, V, p, , and
the interfacial surface tension y.

The MS equations implicitly specify the shape of this
finger by determining 8, the angle of orientation of its
surface, as a function of a real parameter s. In the no-
tation of MS, s = 1 at the tip of the finger and s 0
infinitely far back along one side; 8( 1 ) = , n at the —tip

and 8(0) = 0. The equation for 8(s ) is

d dH
ptgS — gS = g

—COSH,
ds

where the function q (s ) is defined by

s ' 8(s')
lnq (s) = ——9' ds',"o s'(s' —s)

and

v = yb m /12@, Va (1—k)'

(2)

&/r.

1 —s
qo(s) = cos80(s) =

1+~s (4)

is the small dimensionless parameter which contains
the surface tension. The function q (s) is proportional
to the tangential velocity of the fluid at the interface
and, accordingly, must satisfy the boundary conditions
q(0) =1, q(1) =0. The symbol H denotes the Cau-
chy principal value. The integral in (2) is indicative of
the nonlocality of this hydrodynamic system.

When u=0, (1) and (2) can be solved explicitly to
yield
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where n = (2A. —I )/(A. —1) . Equation (4) is automatically consistent with the boundary conditions for any h. , and

thus this solution fails to determine the selected g. Our next step, still formally following MS, is to let v be small

but nonzero and linearize (1) and (2) in the neighborhood of the solution (4) . ' ' We define

8(s ) = 80(s ) + v8, (s ), and obtain an inhomogeneous linear equation of the form

d Hl d8l ~& 8i(s')ds'
v +vP(s) +Q(s)8, +H(s)9' =R (s),

ds As s' —s

where

Q(s) =—

(1+a)
2(1-s)(1+as) '

(1+ )' (1+ s)' '
s'i2(1 —s )

( )
(1+n)'i

2s' '(1 —s)' '(1+as)
3A

2(1+ ns)

H(s) =(I+as)' '/ns'(I —s)' '.

Relevant boundary conditions are 8&(0) =8t(l) =0.
Note that, if we set v=0 in (5), the remaining equa-
tion is identical to (29) of MS. We depart from MS at
this point by noticing that the terms proportional to v

in (5) are derivatives and therefore constitute a singu-
lar perturbation which cannot necessarily be discarded
without missing essential features of the solution.

In order to construct v-dependent solutions of (5),
we first convert it into a purely differential equation by
defining P to be a function of the complex variable z

such that

where 8(z) = 80(z) + —,
'

m. The imaginary part of (12)
is identical to (5). Note that the physical values of $
occur on the branch cut between z = 0 and z = 1, and
that 8 is the natural angular variable which vanishes at
the tip, z =1, and changes from + —,'n to ——,'m as z

moves clockwise all the way around this cut starting
just above it at z = +i 5 (6 0) and returning to
z = —i5.

Our next step is to construct a solution of (12) by a
WKB method similar to that used for the local models
of solidification. 7'2 '4 The homogeneous solutions are
found to be

pl
@(z)=„ds 8i(s)/(s —z),

8t(s) = m
' lim Imp(s +i a).
~~ 0

y+ (z) = expl+ (I/Jv)y(z) ——,
' I8(z)],

where
t li2

(z) = dz 1+nz ie(z')/2
" t z' z' —1

(14)

(15)

dz d
v +vP +Q(s)p=i7rR,

dz2 dz

with

(12)

Q (z) = Q(z)+i mH(z) = —
2

e's '~ (13)z'(z —1)

We complete the specification of P by letting it be a
solution of

Examination of these formulas reveals that neither @H+

nor pH, by itself, is an acceptable component of a
solution of (12). The function P~+ is inconsistent with

(10) because it diverges at iz i ~; and @H diverges
as z +i 0, that is, as 8 —+

2 n Howe.ver, we can
use these two homogeneous solutions to construct a
particular solution that is well behaved as ized

and, say, near 8= + —,
'

m. This solution has the form

Q (z) =—(~/~i), dz' f(z')(@"(z)g (z') —p (z)@ (z')]+Apg~(z),

and A is a constant which is chosen to cancel the
divergence at z = +i 5 0. That is,

~lA"= —(m/Wv) 'i dz f(z)PH+(z).J gg

The problem with (16) is that the resulting 8& does not
vanish at the tip, s =1. A related difficulty is that, if
we analytically continue @P(z) from z = 0, above the
cut, around z = 1, and back to z =0 below the cut, wc
again find a divergence. Thc situation is directly
analogous to what happens in the dendrite problem
~here solutions that are well behaved far from the tip
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and, after some further algebra, can write the solvabili-

ty condition in the form

~OO

&)(I) =
p 4 —Oo

where

dqF(q)exp =0,
t

(20)

F(g) = ~ [6~ —p'( I + &') ]
4(1+P g )(I+q2)3i 1+iv)

1/8

(21)

The integral in (20) can be evaluated numerically;
but its most interesting properties can be obtained by a
steepest-descent approximation. From (19) we see,
that Q has points of stationary phase at q= +i. It also
has logarithmic branch points at q = + i p = + i [1
—4(& ——,

' )1 which, for X) —,', lie closer to the real
axis than the stationary points at +i. For small v, the
dominant contribution to (20) comes from the neigh-
borhood of q= +i. For X ) —,', however, the station-
ary point q = + i must be interpreted as a complex
conjugate pair of points on either side of a branch cut
running from q=iP ' to +i~. Accordingly, the
path of steepest descent must include a section which
goes from q=i —8 (8 +0), around the branch
point at iP, and back to i + 5. If this section of the
contour is long enough to contain many oscillations of
the integrand, then 8&(I) itself will be an oscillating
function of X. On the other hand, if A. is close enough
to —,

' (or less than —,
' ), then the branch point will be

too close to the stationary point (or above it), so that
this analytic structure will not be resolved by the in-
tegrand and no oscillations will occur in 8&(1). This is
precisely the same analytic mechanism that produces
zeros in the solvability function for the local models of
dendritic solidification. '4 The quantity P2 —1 turns out
to be a direct mathematical analog of the crystalline
anisotropy.

To make this description more precise, let q=i +~

on one side of the needle crystal do not connect
analytically to well-behaved solutions on the other side
except for special values of the growth velocity. The
appropriate procedure for identifying solutions in the
present case is simply to use (11) and set 8&(1)= 0;
that is, Img (1)=ImAP=O is the solvability condi-
tion that determines special values of X for which

physically acceptable solutions occur.
To implement the above procedure, it is useful to

transform the variable q=tan8, in terms of which
z = (1+p'g') ', where P = (1+a) 'i'= ) /(I —X).
We then find that

y(~) = y(g)

, (1+iq')'i~(1 —i v)')'i4
=2i ~ dq'

~0 1+p'z'

and use (19) to compute the form of P for ~co
~
(( 1:

2 7/4
~j (~) = y(~) —y(i ) = constx, . (22)

1 —p
The crossover from oscillating to smooth behavior will
occur when AP(ao)/Wv is of order unity for values of
~cu) equal to the effective distance along the contour
between the stationary points, that is, for ~co

~

—1
—P —

A,
——,'. Inserting this condition into (22), we

find X ——, —v'i3. The final step in the development is
to identify this crossover condition as the actual selec-
tion criterion. In this case, as with the dendrites, ' we
argue that the solution with the smallest A. (or the larg-
est v at fixed A. ) is most likely to be dynamically
stable —that broader fingers with flatter fronts would
be subject to the same instabilities of the flat surface as
those which produced fingers in the first place. We
should emphasize, however, that none of this analysis
touches directly on questions of dynamical stability.

In summary, we find that the solvability condition
for the Saffman-Taylor problem has a discrete set of
solutions (infinitely many in the limit of small v and
fixed h. ). The physically selected finger is predicted to
have a width X such that A.

——,
' is proportional to v2i3

in the limit of small v, a result which seems to be con-
sistent with numerical data. 3 Perhaps most impor-
tant, from a more general point of view, is that the
detailed mathematical structure of the solvability
mechanism for this nonlocal problem is essentially the
same as that which has been found for local models of
solidification.

This research was supported in part by U.S. Depart-
ment of Energy Grant No. DE-F603-84ER45108 and
by the National Science Foundation under Grant No.
PHY 82-17853, supplemented by funds from the Na-
tional Aeronautics and Space Administration, at the
University of California at Santa Barbara.

P. G. Saffman and G. I. Taylor, Proc. Roy. Soc. London,
Ser. A 245, 312 (1958).

For a recent review, see D. Bensimon, L. P. Kadanoff,
S. Liang, B. I. Shraiman, and C. Tang, "Viscous Flo~s in
Two Dimensions" (to be published).

3J. %. McClean and P. G. Saffman, J. Fluid Mech. 102,
455 (1981).

4J. M. Vanden-Broeck, Phys. Fluids 26, 2033 (1983).
5D. Meiron, Phys. Rev. A 33, 2704 (1986).
6D. Kessler and H. Levine, Phys. Rev. A 32, 1930 (1986).
7J. S. Langer, Phys. Rev. A 33, 435 (1986).
SR. Brower, D. Kessler, J. Koplik, and H. Levine, Phys.

Rev. A 29, 1335 (1984).
D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A 30,

3161 (1984).
~OE. Ben-Jacob, N. Goldenfeld, J. S. Langer, and G. Schon,

Phys. Rev. A 29, 330 (1984).
~E. Ben-Jacob, N. D. Goldenfeld, B. G. Kotliar, and J. S.

Langer, Phys. Rev. Lett. 53, 2110 (1984).

2034



VOr.UME 56, NUMBER 19 PHYSICAL REVIEW LETTERS

~2The nearly local limit of a realistic nonlocal model of
dendritic solidification has been studied analytically by
B. Caroli, C. Caroli, B. Roulet, and J. S. Langer, Phys. Rev.
A 33, 442 (1986).

~3This linearization is mathematically the most subtle as-
pect of our analysis. M. Kruskal and H. Segur (unpub-

lished) have shown in a speciai example that the soivability
function analogous to Ht(1) is given correctly by this
method up to a constant prefactor which is irrelevant for our
purposes. More details of this analysis are given by J. S.
Langer and D. C. Hong, to be published.

~4Langer and Hong, Ref. 13.

2035


