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Velocity Selection and the Saffman-Taylor Problem
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A new approach to the velocity selection problem is presented. It establishes a relation between
the existence of propagating steady states as a function of a parameter and a certain inhomogeneous
linear problem, the solvability of which determines the set of allo~ed velocities. The method is il-

lustrated on the example of a geometrical model of solidification. It is used to explain analytically

the fact that at large velocity the Saffman-Taylor "fingers" have width close to ~ and to predict the

scaling exponent for the dependence of the finger width on velocity.

PACS numbers: 47.20.ky

The study of patterns formed in nonequilibrium sys-

tems is often confounded by the problem that the
theory seems to allow for a continuous family of
steady-state solutions, while a unique state is reprodu-

cibly observed in the experiment. Such is the situation
with the growth of dendrites, ' propagation of fingers
of one viscous fluid into another2 (the Saffman-
Taylor problem), and directional solidification.

Saffman and Taylor2 in 1958 studied the displace-
ment of a viscous fluid in a thin cell by air. Their
theory, which neglected the surface tension, described
a continuous family of steady propagating finger solu-

tions, suggesting that fingers occupying an arbitrary
fraction X of the width of the cell can exist. For a
fixed velocity of displaced fluid, V, which is controlled
in the experiment (the dimensionless control parame-
ter is proportional to p, V/a, with 0. being the surface
tension and p, the dynamic viscosity), the fingers
would propagate with different velocities V/A. . How-

ever, the experiment reported in the same paper ob-
served unique steady states with the width of the
fingers li. approaching —,

' for large velocities V. Thus
the problem was to explain the selection of that partic-
ular state. The importance of the surface tension in

the problem was recognized immediately: Without it
the dynamics of the interface is unstable. The steady-
state equations with surface tension included were
solved numerically by McLean and Saffman and
Vanden-Broeck7 who found that the continuous family

of solutions broke down to a discrete set. However,
the perturbation theory for small surface tension failed
to show this "selection" and no satisfactory analytic
understanding emerged.

Kessler, Levine, and Koplik8 and Ben-Jacob er ai.9

proposed on the basis of their studies of local models
of solidification (a geometric and a boundary-layer
model, respectively) that the "velocity selection"
problem is generically resolved by solvability condi-
tions arising from the singular effects of the surface
tension. Their method followed that of Vanden-
Broeck7 and consisted of relaxing one of the boundary
conditions for the steady-state equation, numerically

integrating the equation for different values of the
parameter, and then selecting those values of the
parameter for which all the boundary conditions were
satisfied. An important step in the analytic under-
standing of the problem was made by Langer'0 who,
using a WKB approximation on the example of a sim-
ple geometrical model, exposed the delicate nonper-
turbative nature of the solvability condition. The
minimal geometric model was also studied in the re-
cent work of Kruskal and Segur" and Dashen et ai. '2

using different approximations. However, the con-
clusions drawn from the analysis of local modelss 9 are
still contested, '3 and it is most important to be able to
address the more physical, nonlocal problems directly.

In this paper a new approach, alternative to the
"matching" method described above, is introduced.
The advantage of the present formulation is that it
puts the question of the existence of the family of
solutions into a standard form familiar from perturba-
tion theory. Combined with the WKB approxima-
tion'0 "'4 it provides a powerful tool for the analysis
of both local and nonlocal models. Below, after for-
mulating the method, I illustrate it on the example of a
"minimal" geometric model, for which the depen-
dence of the selected velocity on the anisotropy is ob-
tained. The approach is then applied to the Saffman-
Taylor problem and allows us to show that only the

finger exists in the limit of vanishing surface
tension. For small surface tension a discrete set of
solutions is found. The width of the "fingers" ap-
proaches —,

' with exponent ——', as the control parame-
ter goes to infinit. This scaling agrees well with the
numerical results.

Instead of solving the nonlinear steady-state equa-
tion for different parameter values one can ask wheth-
er, given a solution at one set of the parameters, there
is also a solution nearby. One then looks for a mode
corresponding to the infinitesimal change of parame-
ters, which quite generally entails solving an inhomo-
geneous linear problem. Formally, let the steady-state
shape be described by X(s) determined by some equa-
tion containing a set of parameters y (e.g. , o. and 1~. for
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u„= (~ + o. 8,'~) (1+e cos28), (3)

where o. is the surface tension, e is the coefficient of
twofold anisotropy, and ~=ti,8(s). A steady transla-
tion of the interface with velocity v is described by
v„=u cos8, so that the steady-state equation has the
form

a,'~(s)+eP(s)+ [./(I--. )]U, (~(s)) =0, (4)

with U, (H) =—cosH/(I+ezcos28) and e =—2e/(I —e)« 1. In the absence of surface tension, o. =0, Eq.
(4) can be integrated, yielding a family of solutions
80(vs (1—&) ') related by a scale transformation.

We now address the full problem by constructing
the linear operator

K„=v' rl3+ t), + U,
' (&„(~)),

where a reduced velocity v = v4~/(I —e) && I is de-
fined and r =—vs/(I —e). If &„(~) is a solution of Eq.
(4), then, since Eq. (4) does not involve s explicitly,
r),8„(r) is a zero eigenmode of K. Thus, there will be
a nontrivial solvability condition! The physical formu-
lation of the problem requires the eigenfunctions to
vanish at infinity. We shall require square integrability
and use the standard Hilbert-space definition of a
scalar product. The adjoint operator K is then

K = —v2 83 —9,+ U,
' (8„(r)) .

the Saffman-Taylor problem): F {X]=0. Assume
that X„solves it for some y and define an associated
linear operator K= SF—~/SX If a continuous family of
solutions exists, there is a mode X = t)„X~, correspond-
ing to an infinitesimal change of y along some iine in
the parameter space, satisfying

KX = —r)~F„lx . (I)

Conversely, a continuous family passes through the
point y if and only if the "parametric" mode X exists
at that point. This requires solvability of an inhomo-
geneous linear problem given by Eq. (1). If the linear
operator has a zero eigenmode (, K( = 0, there is a
solvability condition'4 requiring the inhomogeneous
term of Eq. (1) to be orthogonal to the zero eigen-
mode q of the adjoint operator K:

(&, a„F„{,) =0. (2)

The orthogonality condition of Eq. (2) will in general
define surfaces in the parameter space for which solu-
tions exist. The intersections of these surfaces with
lines corresponding to the free parameter will deter-
mine selection.

I now illustrate the method for the example of the
minimal geometric model'0'2 of interface dynamics.
In this model the normal velocity v„of the interface
(parametrized by the arc length s) is determined by the
local curvature K and the angle of the normal 8:

S= (q, 830 ) + — (q, r), U, (H )) =0, (8)

where the angular brackets stand for the integral over
The ~=0 solution of Eq. (4), 80(r), is given im-

plicitly by 7-=x+~ tanhxand tanhx =sin80. Then

-a,~, = U, (~,(.))
=coshx(~) [coshzx(r)+e2]

In order to evaluate the integrals in Eq. (8) asymptoti-
cally'4 for v « 1 we study the analytic structure of the
integrands. The dominant contribution comes from
the closest pair of branch points in the upper half-
plane which for e2«1 are at r= +2e+im/2 [at
these points cosh x(r)+e =0]. In their vicinity the
integrands can be simplified by the introduction of
2eg =—s —i7r/2, {e${« 1, and expansion of the hyper-
bolic functions. Explicitly one finds that

1

4E'

with

l„(z )

t oo —i0+
=Re{e '"~ d~[~' —I]-~e'»~]

—oo —i 0+
(10)

The bracketed expression in Eq. (9) depends only on
the ratio r = ~/v so that the solvability condition has a
form f i (r ) + [r + v(dr/d v) ]fz(r ) = 0 and in the limit
v 0 requires that f&(r) +rf&(r) =0. For r &) 1 the
integrals are readily evaluated by the steepest-descent
method yielding the asymptotic'6 form of the solvabili-
ty condition: cos(2e/v —3m/8) = 0. The latter has a
countable infinity of solutions which in terms of the
original parameters of the problem define a set of "al-
lowed" velocities: vk = 8e/ m a-k for integer k )) 1.
This result fits well with what is known about the
model and proves the conjecture about the asymptotic
behavior of this set made by Dashen et al. '

The above example illustrates well most of the im-
portant points of the method. The solvability condi-
tion is associated with the zero mode, B,HO, which ap-

We now look for a zero eigenmode of the adjoint,
K q = 0, using a WKB approximation'4 in the spirit of
Langer': g(~) = A (r)cos(v 'r). The fast phase fac-
tor balances the derivative terms of the equation while
the slow amplitude obeys 8, !nA (T) = ——,

'
U,'(0„(~))

and for v « 1 one obtains

g(T) =& [U (ii (T))]"'cos(v 'r)+0(v') (7)

For the "parametric" mode corresponding to the
change (dv, de) in the two relevant parameters the
solvability condition, Eq. (2), for v 0 requires that
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(large values of the control parameter ), leaving the
details of the calculation to be published elsewhere. '7

A steady propagating finger occupying a fraction
A. = (1+a) ' of the channel width satisfies the equa-
tion

pears because of the reparametrization invariance of
the interface (it reflects the freedom left after specifi-
cation of a particular parametrization) and is thus typi-
cal of the whole class of problems. A peculiar feature
of the problem is that while t),8„ is a "slow" function
of 7, the adjoint zero mode q is not. It has a "fast"
phase factor varying with r/v. This behavior is a
consequence of the singular nature of the small—
surf
turb
duci

L
the
mo
two
citly
lng
tion
map
Bel
of t

v2tl~Hp(K )
—(1+a)eg'4" cos8(@)+1=0,

ace-tension limit and is responsible for the nonper- with v2 —o/p, V (( 1 being the dimensionless surface
ative (exponentially small) form of the term pro- tension, & the angle of the normal, and g($) = 1n(ds/
ng the solvability condition. dg) with s the arc length. The parametrization @,
et us now discuss the application of the method to —~ ( $ ( ~, is determined by the condition that
Saffman-Taylor problem. 2 Unlike the geometrical g($) + i&($) is analytic outside the unit circle

del the steady-state equation for the interface of exp(i$), which means that g= —Hp{8}, Hp(. . . }
fluids is integrodifferential. It is determined impli- being the Hilbert transform on the circle. Finally,
by the constraint that the velocity potential (obey- K = exp( —g)84,& is the curvature.

the Laplace equation) satisfies tv' boundary condi- For zero surface tension, v =0, there is a family of
s on the interface and can be derived by conformal steady states: exp(gp+i0p) =)~. +i (1 —A. )tan($/2)
ping techniques, which were reviewed in Ref. 4. corresponding to fingers of width A. moving with velo-

ow, I shall only sketch the analysis of the solvability city V/A. . To study the problem for v ((1 we con-
his steady-state equation for small surface tension struct the linear operator by expanding in /=58 and

Sg= —H(():
K(=-,'v'(I+7')B, H{7.8,/+K. H{g) }+H(g)+arg(T), (12)

with a new variable ~ = tan($/2), H the Hilbert transform on the real line, 7 (7 ) =—(I +a) ( I+ w2) (I +a2~2) —V2,

and ~ (r) =a(I+a)(1+v')(1+a'r')
As before, the zero mode of K is readily found: ((r($)) = ti4,8p. This implies the existence of the solvability

condition and one has to proceed by defining the adjoint operator and looking for its zero mode q. It can be found
by use of the WKB approximation" and has the form )(7r) =exp[v 'O(r)], with

v 2 ar —i [1+(1+a'7')'i']
(1+a)'i (1+~ ) [1+(1+a 7.2) 'i2]'i2

The function W has a logarithmic singularity at
s= +i, with a prefactor e3i4/v2 for 0(e =—)~. ——,

'

((1. This singularity dominates over the saddle
point at s= +ia ', when the steepest-descent
method is used to evaluate the integrals appearing in
the solvability condition which has a form similar to
that in Eq. (8). The resulting condition (asymptotic
for v '~'i4)) 1)

cos(n c3i4/%2v +const) = 0 (14)

is the main result of the paper: For small values of
dimensionless surface tension or, equivalently, for
large velocity, there is a discrete set of finger solutions
with 2A. —1 —v4i3 —(a./iL V)2i3. This scaling fits well
the results of earlier numerical simulations. 4 7'5 Ex-
perimentally, fast fingers do have width very close to

Unfortunately, the instability that sets in at large
velocity limits experimental study of the sealing.

In conclusion, this paper presented an approach to
the velocity selection, which allowed us to understand
and determine the scaling for the Saffman-Taylor
problem for small surface tension analytically. It
would be useful to develop simple solvability argu-
ments based on counting modes and boundary condi-

I

tions. Another very interesting question is under-
standing why the solvability condition for the steady
state controls the dynamical process of pattern selec-
tion. The present approach may again be useful: The
parametric mode is relevant dynamically.

The author is grateful to D. Bensimon for comparing
the predicted exponent to his numerical results, to
Daniel Fisher and E. Siggia for incisive questions, and
to P. C. Hohenberg for his interest and advice.
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