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Tests of Time-Reversal Symmetry in Compound-Nucleus Reactions

D. Boose, H. L. Harney, and H. A. %eidenlnuller
Max Pla-nck Jns-titut fiir Kernphysik, Heidelberg, Federal Republic of Germany

(Received 23 December 1985)

Using a generating function with both commuting and anticommuting variables, we calculate per-
turbatively the violation of the principle of detailed balance due to breaking of time-reversal sym-
metry in a statistical nuclear reaction. %e apply this result to the best data and establish upper
bounds for the strength of, and the spreading width associated with, the symmetry-breaking part of
the Hamiltonian. %e argue that the spreading width is the fundamental parameter of the theory.
A way of further improving the upper bounds is suggested.

PACS nombers: 24,60.Dr, 11.30.Er, 24,60.Ky

The observation of CP nonconservation in the K-lC
system'2 has led to high-precision experiments testing
detailed balance in compound-nucleus (CN) reac-
tions. '4 The interpretation of these experiments has
suffered from the lack of an adequate statistical theory
of CN reactions which would connect the observable
with the time-reversal-symmetry-breaking (TRSB)
part of the nuclear Hamiltonian. The solution of this
problem is reported in this Letter. It is based on a re-
cent advance' in the statistical theory of nuclear reac-
tions. We present an expression for the amount of

I&.bl'= ~&~.b~b, ) —&~,b) &~b ) ~~&~.b) &~b. ) j ',

violation of the law of detailed balance in terms of the
strength of the symmetry-breaking part of the Hamil-
tonian. (Lack of space does not allow us to give the
derivation in detail. b) We discuss the experimental
limits in the light of our result. We argue that TRSB
in nuclei should be parametrized in terms of a spread-
ing width, and we suggest that the most promising re-
gion to perform detailed-balance experiments is that of
weakly overlapping CN resonances.

The most stringent upper limit obtained so far~ for
TRSB in CN reactions yields IXI & 10 6. Here X is
the deviation from unity of the observable

which measures the correlation between the cross section O.,b of a CN reaction from channel a to channel b (with
be a), and the cross section orb, of the inverse reaction. The angular brackets indicate an average over a suitable
energy interval. The theoretical effort is directed towards expressing IA,bl in terms of the TRSB part of the nu-
clear Hamiltonian.

To this end we model the statistical S matrix S,b(E) in its dependence on energy E in analogy to Ref. 5 and
Weidenmuller. ' We denote the open channels by a, b, c, . . . . The CN levels are modeled as N orthonormal bound
states labeled tM„v,. . . ; we eventually take the limit N ~. The levels are coupled to each other by the nuclear
Hamiltonian with matrix elements H„„=H„'„,and to the channels via matrix elements W,„=W~, . We go beyond
the work of Refs. 5 and 7 because TRSB does not allow us to choose the matrices Hand W real as was done there.
The unitary S matrix has the form

S b(E) =& b
—2inX„„W„['(El—H+i n'M) ']„„W„b,

where I is the unit matrix. The Hermitian matrix M
has elements M„„=g, W„,W,„Wen.eglect the
dependence of the matrix W on energy. Without
TRSB this dependence does not destroy detailed bal-
ance. Our neglect therefore only implies that I
given below is approximate, the error being of the or-
der I /5 Ewhere I is the average CN width and b E the
energy over which W changes significantly. With
I =45 keV and AE —1 MeV given by threshold or
shell effects, we find that I /5 E is negligible.

In Eq. (2) we have omitted direct reactions and the
shape-elastic scattering phase shifts. As to the former,
the experiment has been set up in such a way as to
minimize their contribution. Concerning the latter,
phase factors do not affect the value of l~,bl2. We

I

have likewise suppressed the shift functions in the
propagators, Again, this simplification does not affect
the structure of the result but only the form of the
transmission coefficients. s

The statistical properties of the S matrix are embod-
ied in those of the Hamiltonian matrix H We as-.
sume5 7 that H is a member of an ensemble of random
matrices. To allow for TRSB, we decompose 0 into
two parts,

H = H" + H~" &. (3)

Here, H' preserves time-reversal symmetry and is
drawn from the Gaussian orthogonal ensemble
(GOE), while H "~ breaks this symmetry and is drawn
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fmm the Gaussian unitary ensemble (GUE). We as-
sume H 'i and H "' to be uncorrelated, to have zero
mean values, and to have second moments given by

(the angular brackets denote the ensemble average)

(H "Hi, ) =~'N-'(a, a, +S,a, ), (4a)PV I r

PP VV PV VP,

(H'"'H'", ", ) = 2n'Z'N-'a, aPV P,
'V' 0 I.I.' VV

Equation (4a) has the form used previously5' with X a
strength parameter of dimension energy. The average
GOE level spacing d is given in terms of ii. by
d~ A. N '. The real dimensionless parameter noN
measures the relative strength of the GUE versus that
of the GOE. It must be chosen'0" to be of order
N ' z. Indeed, the dimensionless parameter iR,bi2 in

Eq. (1) can depend on the strength of H "i only via
the dimensionless combination noAN/d . . This ra-
tio is independent of N only if no does not depend on

The fact that the matrix W is Hermitian but cannot
be chosen real has no bearing on the value of iR,bi2.

Indeed, both Eqs. (4) are invariant under real orthogo-
nal transformations in the space of CN levels. Except
for trivial overall phase factors (which cancel in

i R,b iz ), both the one-point functions (S,b ( E) ) and
the two-point functions considered below can depend
on W~, only via the orthogonally invariant form

Q„W,„W„b. In keeping with Nishioka and
Weidenmiiller, ' we assume that this Hermitian matrix
in channel space has been diagonalized by a unitary
transformation. With

(4b)

g, W„W„,=5„X„W.„W,.=5.,x„iW„,i2,

we see that the one- and two-point functions depend
nontrivially only on the moduli of the matrix elements

W„,. We therefore take W~, to be real in the sequel.
We calculate iR,bi2 to lowest nonvanishing (= first)

order in noz, and for the case of strongly overlapping
I

CN resonances, where the number A of open channels
is large, A » 1. Using the fact that o.,b is the prod-
uct of two S-matrix elements, and that for A » 1

the elements of the S-matrix are Gaussian distribut-
ed, '3 we deduce fmm Eq. (1) that R,b is the ratio of
two two-point functions,

R.,= (S., (E)S" (E) ) (S., (E)S:,(E) ) -'. (5)

R,b
——I + 2noii. ( Y,b —Yb, ) [ T, Tb/ X, T, )

with the four-point functions Y,z given by

(6)

In keeping ~ith the random-matrix model, we have re-
placed the energy average of Eq. (1) by the ensemble
average over the joint probability density of H'i and

Use of the GOE in Eq. (4a) to simulate the local
fluctuation properties is well justified, and forms also
the basis of the work of Ref. 11. Even in the presence
of secular changes, all available evidence in nuclei
(isolated levels, doorways) shows that the fluctuation
properties are consistent'~ ' with the GOE. The same
holds true for the fluctuation properties of the Sinai
billiard. '5 As for the GUE, the recent analysis'6 of the
quantized Sinai billiard with magnetic field assigns to it
a similarly universal role in the presence of TRSB.
Secular changes of h. or no in Eqs. (4) lead to small
corrections of I'"'.

We expand the S-matrix elements in Eq. (5) to
second order in H "i and take the GUE average of
numerator and denominator with the help of Eq. (4b).
The second-order terms cancel mutually in the ratio

R,b and therefore need not be considered. We also
use that for no = 0, we have7

SgbS~b=S,bS~= T~Tb/X T~.

This is the Hauser-Feshbach formula with transmis-
sion coefficients T, = 1 —

i (S„)iz and for (S,b)=S,b (S„). To first order in no, we find

Y,q=4rr2N 2 X W„,Wpb(G„+„G„„Gp+G, ) W„dW„.

R =1—2 ', (X,T, ) -'. (s)

KP VPQ'T

The average extends over the GOE only and the prop-
agators, denoted by Gt+-i= (El —H'i +ivrM) '„are
symmetric, G„i„+-'= G„'„-+'.W'e must calculate the
GOE four-point functions of Eq. (7). This goes
beyond the problem solved in Ref. 5. We confine our-
selves to the term of lowest order in an asymptotic ex-
pansion in powers of (gT, ) ', the same approxima-
tion which yields the Hauser-Feshbaeh term in Eq.
(6), and valid for A » 1. Even in this appmximation
the calculation is very involved and favorably carried
out with the help of Grassmann variables. 5 It yields
R,b=R independent of a, b for all ahab. The quantity
R can be written in two different ways. One way is

Alternatively, we may intmduce the average CN decay
width I = d/(2m) $T„and the spreading width
I t" i = 2n (2nok /Nz)/d associated with the GUE Ham-
iltonian H "i. Taking for d the expression d =7rXN
valid at the center of the GOE spectrum, we obtain

R =1 ——,
' r'"'/r.

Equation (8) shows that R is independent of the lo-
cation of the energy E within the GOE spectrum (for
transmission coefficients chosen constant throughout
the spectrum). Equation (9), suggested in similar
form twenty years ago by Erieson, shows that 8
differs from unity by a term which is proportional to
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the ratio of the CN lifetime h/I' versus the time t/I'")
it takes to mix any two close-lying CN levels because
of the presence of 0 "). This is intuitively reasonable.
The negative sign in Eqs. (8) and (9) is implied by the
Schwarz inequality.

In using our result to interpret the data, eve must
choose between the forms (8) and (9). This raises the
following question: Which of the two quantities n2p

and I'"' is the natural choice for parametrizing 8 in
the sense that the value of the parameter used depends
weakly on energy E and mass number A? The ques-
tion is nontrivial since the ratio ap/I " depends on
the level spacing and thus strongly on both E and A.
We have no unequivocal answer and defer the ques-
tion to the end of this Letter, first discussing the data
in the light of both parametrizations (8) and (9).

The authors of Ref. 4 expressed their experimental
result in the form R2= 1 —4/2. For the CN 28Si the
quantity ( was found to be smaller than 5 x 10 4 with a
confidence level of 80%. With I' = 45 keV taken from
Ref. 9 this implies

by the detailed-balance experiment. This is not so if
1 '"' is the natural parameter.

A strong hint that I (") is the relevant parameter is
furnished by recent analyses22 23 of a large set of data
on isospin-symmetry breaking in CN reactions. While
a plot of the rms Coulomb matrix elements shows a
strong dependence on both mass number and excita-
tion energy of the CN, the associated spreading
widths —defined in analogy to 1"'")—vary by less than
a factor of 10 around their mean value. This can be
understood semiquantitatively on the basis of a sum
rule. The isospin symmetry broken by the Coulomb
force is, of course, of a type different from time-
reversal symmetry. Nonetheless, the theory of sym-
metry breaking in CN reactions has so many points in
common in both cases that we strongly feel that I (") is
the parameter which ought to be used.

Taking this point of view, we note that the most
promising choice for a further improvement of the ex-
perimental limit on TRSB in nuclei is a case with a
small decay width I' which means that d and/or g, T,
should be small. The analysis of the data may then re-
quire an extension of our theory: For I & d, the dis-
tribution of the S-matrix elements is no longer Gauss-
ian. Even for ap2=0, the terms appearing on the
right-hand side of Eq. (1) then contain the GOE four-
point function, and for the terms of first order in a2p,

the six-point function is needed. Work on this prob-
lem is under way. 24

In conclusion, we have established a novel and
rigorous theoretical framework for connecting experi-
mental bounds on violation of the law of detailed bal-
ance with the underlying TRSB part of the Hamiltoni-
an. We have analyzed the best existing data in this
framework. We have suggested a way of further im-
proving the upper bounds on I'(").

The authors are grateful to J. J. M. Verbaarschot for
discussions and to A. Richter and M. Simonius for
helpful suggestions.

I'"' ~ 9X10-' eV. (10)

Using the Fermi-gas level density of Gilbert and Cam-
eron'a and the level-density parameter from Vonach
and Hille, '9 we find for a CN with spin 3 that d=9.6
keV. This and I = 45 keV imply g, T, = 29, and hence
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