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Current-Mass Ratios of the Light Quarks

David B. Kaplan and Aneesh V. Manohar
Lyman Laboratory ofPhysics, Harvard Uniuersity, Cambridge, Massachusetts 02738

(Received 19 February 1986)

%e investigate the current-mass ratios of the light quarks by fitting the squares of meson masses
to second order in chiral-symmetry breaking, determining corrections to steinberg's first-order
values: m„/md=0. 56, m/md=20. 1. ~e find that to this order, m, /md is a known function of
m„/md. The values of the quark-mass ratios can be constrained by limiting the size of second-order
corrections to the squares of meson masses. %e find that for specific values of presently unmea-
sured phenomenological parameters one can have a massless u quark. In that case 30% of the
squares of meson masses arise from operators second order in chiral-symmetry breaking.

PACS numbers: 14.80.0q, 11.30,Rd, 11.40.Fy

In spite of the wealth of hadronic data, it remains
impossible to extract reliable values for the current
masses of the u, d, and s quarks. This well known dif-

ficulty arises from the fact that these quarks have
strong interactions characterized by a mass scale that is

much greater than their mass parameters in the QCD
Lagrangean. However, as Weinberg has shown us,
one can get a handle on the mass ratios of these quarks
by using SU(3) 8 SU(3) current algebra to relate
these ratios to the measured pseudoscalar-meson
masses. He finds m„/md =0.56, m, /md = 20.1.' But
how reliable are these values? The joke of the matter
is that while the mass of the s quark is too small com-
pared to the hadronic scale to be measured directly, it
is too large for SU(3) S SU(3) current algebra to be
very reliable at lowest order in chiral-symmetry break-
ing. Furthermore, one loses predictive power in going
to higher order in chiral perturbation theory. Thus any
attempt to investigate corrections to Weinberg's mass
ratios is going to involve more effrontery than artistry.

This Letter is precisely such an attempt. We work in
the context of an SU(3) S SU(3) chiral Lagrangean
and calculate the meson masses including operators up
to second order in the quark mass matrix M or the
electric charge 0. We also include logarithmic contri-
butions of comparable magnitude from chiral loops.
Since there are more operators (and hence more incal-
culable strong-interaction coefficients) than there are
meson masses, one cannot calculate the quark-mass
ratios in the straightforward manner that Weinberg
used. One possible approach is to parametrize the
chiral Lagrangean in such a way that the unknown
strong-interaction coefficients are all dimensionless
numbers expected to be —1. This may be done by
the dimensional-analysis argument of Weinberg and of
Manohar and Georgi. ' Then one can scan values of
the quark-mass ratios which allow one to fit the meson
masses, consistent with the prejudice that these coeffi-
cients are truly —1, and not —10, for example.

We have chosen a similar, slightly more phe-
nomenological approach. We bound the second-order
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FIG. 1. A plot of the current-quark-mass ratios m, /md vs
m„jmz consistent with the pseudoscalar-meson masses to
second order in chiral perturbation theory, including loga-
rithmic effects. Allo~ed values are constrained to lie on the
curve. By restricting second-order contributions to the
squared meson masses to be less than 20'k, 25'/0, or 30'io of
the lowest-order values, we can exclude regions of the curve
outside the brackets so marked.

contributions to the meson masses, rather than bound-
ing the individual, unmeasurable coefficients of the
second-order operators. This lets one make use of the
observation that most lowest-order SU (3 ) S SU (3)
chiral perturbation calculations disagree with experi-
ments by about 25%. One might then "reasonably"
expect to find that second-order terms contribute 25'/o

to the squares of physical meson masses.
The results of such a computation are shown in Fig.

1. As explained below, m, /md is found to be a func-
tion of m„/md, the physical meson masses, and f;
hence one finds a curve rather than a shaded region in
a plot of m, /md vs m„/mq. We have marked the nest-
ed segments of the curve which are allowed when one
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limits the second-order contributions to the squares of
meson masses to be 20%, 25%, and 300k of their
lowest-order values. The reason why there is a range
of allowed values for m„/mq is because we do not
know the coefficients of the higher-dimension opera-
tors. These coefficients could, in principle, be deter-
mined by analysis of more accurate pion and kaon
scattering data than are presently available. The values
of these coefficients are determined by QCD dynam-
ics. Note that a massless up quark is consistent with
chiral perturbation theory if one allows up to 30% of
the squares of meson masses to come from second-
order effects. Such a possibility provides an economi-
cal solution to the strong CP problem, as has been

often discussed and often discarded in the literature.
In the following we discuss the details of our calcula-

tion, and explain precisely what we mean by the per-
centage corrections mentioned above.

We parametrize the SU(3) S SU(3) chiral
Lagrangean in terms of the field X = exp(2i m, T,/f ),
where m, is the pseudoscalar octet, and to leading or-
der f=f = 93 MeV. X transforms as a (3, 3 ) under
SU(3) S SU(3). There is explicit symmetry breaking
due to the bare quark masses and electromagnetic cou-
plings, which are taken to transform as M = (3, 3')
and Q = ($, 1) 8 (1,8), respectively. The most gen-
eral chiral Lagrangean one can write to second order in

M, Q, and B [ignoring operators which begin at
O(n' )] is given by

W= (f /4) Tr(B„XB"X)+ (f /2) Tr(pMX)+H c.+ c~(f2/2A2) ~Tr(pMX) ~2

+c (f2/2A2) [Tr(pMX)]2+H. c.+c (f2/2A2) Tr[(pMX) ]+H.c.

+c4(u/4m)(f A /2)Tr(QXQX ) +c5(f /2A ) Tr(pMX)Tr(B X B~X ) +H.c.

+c6(f2/A ) Tr(pM B„XB"X)+c7(f2/A2) Tr(B'XB'X ).
In the above expression A has dimensions of mass, and, as argued in Ref. 2, the coefficients c; are —1 if one
takes A = 4mf = 1 GeV. The parameter p, also has dimensions of mass. Since it always multiplies M, one can
never determine the quark masses from the chiral Lagrangean, but only mass ratios.

Since we are only interested in the terms of Eq. (I) which are quadratic in the 7r fields, we can simplify W by
setting c6 and c7 equal to zero with no loss of generality. To do this, note that the transformation

X X{l+ia[X B2X ——,
' Tr(X B2X)+H.c.]+ib[pMX ——,

' Tr(pMX)+H. c.]I

is an SU(3) S SU(3) transformation up to second order in B2 and pM. By choosing a amd b appropriately we can
shift away c6 and c7, absorbing their effects in the coefficients c,-c4, as well as other terms which do not concern
us. Furthermore, we can set c5 = 0 as well, since that term only redefines f to O(n ~) „which we will fit to the ex-
perimental value for f .

Expanding ~ to second order in n, we get

~ = —,
' B„m'B~m' —A [2TrMn (a+e A TrM)

+,'a Tr(M'~'+M~M~) + "C[Tr(M~) ]'+ (~/4~)DA'Tr(Q [~, [~,Q]])}, (3)

where M = M/m, = diag( m„/m„md/m„1), ~ = p, m, /
A2, A =(c&/2+c2), B=2c3, C=4c2 —2ct, and
D = c4. Note that e is the expansion parameter for
SU (3) S SU ( 3 ) chir al per turbation theory.

Counting parameters reveals that there are six de-
grees of freedom for fitting five meson masses. This
explains why m, /md may be expressed as a function of
m„/mz and the physical meson masses, which gives the
equation of the curve in Fig. 1. Including logarithmic
effects shifts the curve, but introduces no new degrees
of freedom.

In evaluating Eq. (3) we have neglected terms of or-
der m„2, md2, m„md since they are much smaller than
terms with one power of m, . It is consistent to retain
terms of 0 ( m„m, ) and drop ones of 0 ( m,3) even
though the latter are numerically larger. This is easy
to see by looking at the combinations m20, m~2+ —m~0

(ignoring electromagnetic splittings for now). These
terms get no contribution of O(m, ), by isospin invari-
ance. Thus we can determine them to O(e). Drop-
ping mdm, or m„m, terms is equivalent to ignoring
contributions of O(e ) to their masses. As for
m2+ +m~0 or m„, keeping m, terms determines the
O(e) corrections to these masses, while m3 terms give
O(e2) corrections. Thus neglecting terms of order
m„, md, m„md consistently determines all the quark
masses to O(e). The contributions to these masses
from Eq. (3) are given in Table I.

Our approximation of neglecting terms of
O(m„2, mq~, m„md) allows us to ignore the effects of q
vr mixing. However, one expects q~' mixing to shift
the square of the g mass by O(e) and so it must be in-
cluded. Luckily no new term need be added to Eq.
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TABLE I. Contributions to the meson masses from Eq.
(3). x=—m„/m„y =—md/m,

2 2
mx y mx+

2 (4n f)' A' (5)

The one-loop values for Z and m2 have been calcu-
lated previously. Here we use values which are simi-
lar to Ref. 3, except that we have been careful to use
different masses for (I(.+,I(.'0) and (m+, mo) since we
are eventually interested in isospin-nonconserving
quantities.

We also performed the one-loop correction to f,
yielding

(2). Note that the coefficient C shifts the lowest-order
q mass squared by O(e) without affecting the other
mesons. Thus any effect due to q~' mixing can be
absorbed into the coefficient C.

There are also the nonanalytic chiral logarithms
which arise from loop graphs which contribute to both
mass and wave-function renormalization. The loop
momentum is cut off at a scale A —1 GeV. We keep
only the logarithmic pieces of these graphs, because
the nonanalytic pieces can be absorbed into a redefini-
tion of the (unknown) parameters c;.

Including the one-loop effects, we find (in an obvi-
ous notation)

2Z~ physical

2. 2 ~ 2
Itlhigher order + mone loop + Itllowest order (4)

allowing us to determine the parameter f in terms of
the experimental value f =93 MeV. f is not needed
for evaluation of the analytic mass terms from Eq. (3),
but it is necessary for evaluation of the logarithmic
contributions to the masses. In all the loop calcula-
tions we have consistently dropped terms of
0 ( ft1„,tnd, Itic ttld ) .

The computation can now be summarized. We have
fitted mph„„„, using Eq. (4) and the calculated values
of Z and (m2),„,l„,. There are five masses, and six
independent parameters. Thus the allowed region is a
curve. We have included only those values where
~ = p, m, /A2 ~ 0.3. This is because one expects correc-
tions to K-decay processes to be of O(e). It is hard to
understand how these calculations could work to 25'/o

accuracy if e were very large. The second cut we have
made is to restrict the net higher-order contribution to
be less than a certain fraction Fof mph„„separately for
each meson. Thus, e.g. ,

~A2e2A Trl(y+1)+ —,
' e28A (1+2y)

~

~ Fmx+, etc.

We chose F to be 0.2, 0.25, and 0.3 for the three al-

lowed regions graphed in Fig. 1.
What about baryonst Though we have not dis-

cussed them here, we have also fitted our masses to
the baryon sector. Unfortunately, the baryons do not
provide any useful constraints on the quark-mass ra-
tios. The reason is that there are ten independent
operators which contribute to the eight baryon masses,
which easily allow one to fit the masses for all values
on the m„/md vs m, /md plot in Fig. 1 which we derived
from the meson sector. Thus baryons add no addition-
al constraints.

The most striking feature of our result is that a
massless up quark is not in contradiction with the past
successes of SU(3) S SU(3) chiral perturbation
theory. A massless up quark is an interesting possibili-
ty, as it naturally explains the absence of CP noncon-
servation in the strong interactions. Anyone ~ho has
an acquaintance with the extensive literature on the
quark masses ~ill be skeptical that m„=o is possible:
Numerous papers claim to have shown, by means of
lowest-order chiral pertrubation calculations, that

(6)

m„=0 is in contradiction with not only the meson and
bayron masses, ' but also with isospin-nonconserving
effects such as q- 3n, and Xo-A mixing. ' The point
of our paper, though, is that second-order effects can
contribute to an effective up-quark mass, of size

Itlrr clttdP Itis/ A cttld ttttc / A 4 ctnrI,

where c —1. Note that for c = 2, one gets the usual
lowest-order result that m„= —,

'
tttd.

One might wonder whether m„'~ would be able to
mimic the lowest-order effects of a real up-quark
mass. Indeed it can; consider the matrix identity

(detM) Tr(m-'r)

The right-hand side is a second-order operator includ-
ed in the Lagrangean of Eq. (1), and the above rela-
tion says that such an operator is equivalent to addition
of a contribution to the quark mass matrix of the form
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(detM) M '. Note that as m„0, we get

(m„=0).

ward Georgi for useful conservations.
This research is supported in part by the National
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Thus the second-order operator in Eq. (8) yields an
m„' such as in Eq. (7) which enters the chiral
Lagrangean to lowest order in exactly the same ~ay as
a real up-quark mass would. 7 Thus there is no first orde-r

chiral perturbation calculation which is inconsistent with

m„=0 when one includes the effects of the second-order
operator in Fq. (8).

Our analysis actually does better than merely replace
rn„by the operator in Eq. (8). We fit the meson
masses exactly The. other operators which enter do
not have the same form as the lowest-order mass term.
Thus by looking at isospin-nonconserving processes,
such as r) 3~, it may be possible to place limits on
the second-order coefficients.

Regardless of whether or not m„=0, our results
show how Weinberg's results for the quark-mass ratios
are modified by second-order effects in chiral-
symmetry breaking. Any theory which predicts the
quark-mass ratios or relates mixing ang1es to mass ra-
tios will have to be consistent with the results of Fig.
l.
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