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A general relationship is established between wave-packet evolution and quantization in classical-
ly integrable systems. Because of wave-packet spreading, one cannot simply take the Fourier
transform of the time evolution of a wave packet. Instead, one must propagate the wave packet us-
ing the actions as Hamiltonians. The energy eigenvalues which result are the Einstein-Brillouin-
Keller values, and new forms for the eigenfunctions appear. These are free of caustic singularities,
and represent averages of wave packets over the invariant torus.

PACS numbers: 03.65.Sq, 33.10.Cs, 42.10.Dy

Wave packets provide methods for carrying out
semiclassical calculations which have been attracting
increasing attention in recent years. Especially notable
are the theoretical and computational studies of Heller
and co-workers, ' 5 who have used wave packets in a
number of chemical applications. Wave-packet meth-
ods are appealing because they yield uniform results,
they require no special attention at caustics, and they
can be used in any number of dimensions. Neverthe-
less, they are somewhat less well developed theoreti-
cally than traditional approaches to the Wentzel-
Kramers-Brillouin theory, which are usually based on
an eikonal Ansatz in configuration space. For example,
the general relationship between the time-dependent
problem of wave-packet evolution and the time-
independent problem of quantization has never been
fully elucidated, even for classically integrable sys-
tems. In this Letter I shall address this question and
remedy this shortcoming.

I base my analysis on a certain semiclassical wave-
packet propagator, which I have described in detail
elsewhere. 6 When this propagator is applied to Gauss-
ian initial states, it yields the same time evolution
discovered originally by He11er. ' I denote the 2N
phase-space coordinates collectively by z = (q,p ), and
the corresponding quantum operators by z = (q,p). I
let ~po) be some initial wave packet (not necessarily
Gaussian), and I set zo ——(po~z~Po) for the initial ex-
pectation values of q,p, which represent an initial point
in the classical phase space. This serves as initial con-
ditions for a classical trajectory z ( t ) or z (zo, t ),
governed by the classical Hamiltonian H(z), which is
the Weyl symbol of the quantum Hamiltonian H(z).
I shall also make use of the symplcctic matrix

which describes the behavior of orbits near the given
trajectory z(zo, t).

In terms of these quantities, the wave-packet propa-

gator is

U(z t) =e' "' ' 'T(z(t))M(S(t))T(z, )'. (1)

The T operators are Heisenberg-%eyl operators, de-
fined by T(z) =exp[i(p p —q p)]. Throughout I
set t = 1. The energy E is that of the initial condition,
8 =H(zo), which is conserved along the classical or-
bit. The phase a(t) is a symmetrized Bohr-Som-
merfeld phase,

t z(t)
u ( t ) = —,

'
(p dq —q dp ). (2)

aJ 2o

Finally, M is the metaplcctic operator' which is
responsible for wave-packet spreading. [The metaplec-
tic operators comprise a projective unitary representa-
tion of the classical symplectic group, Sp(2N). Their
role in wave-packet evolution parallels that of the sym-
plectic matrices in the evolution of localized distribu-
tions in phase space, i.e., in describing the linearized
dynamics near some reference orbit. ] The notation
which suggests that M is a function of S is convenient
but misleading, since there are actually two metaplcctic
operators for every symplectic matrix, differing by a
sign. The choice of sign of M(S(t)) is governed by
two rules. First, at t = 0 we have S (0) = I and
M (S(0) ) = + 1. Next, M (S (t ) ) is determined at all
other times by continuity.

One can use Eq. (1) directly to advance wave pack-
ets in time, and thereby to solve initia1-wave problems.
For quantization problems, one might suppose that Eq.
(1) could be Fourier transformed in time to obtain
semiclassical energy eigen values and eigenstates.
Although this approach does not work, I shall discuss
it any~ay for the useful features it reveals. For sim-
plicity, I let the energy parameter of the Fourier
transform be the same as the energy E of the classical
orbit implied by Eq. (1), and I assume a discrete spec-
trum. I also let the propagator of Eq. (1) act on the
state

~ Po) = T (zo) 10), where ~0& is some fiducial
states (basically, any conveniently chosen wave pack-
et) satisfying (O~z ~0) = 0. Then two Heisenberg
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operators cancel, and one is led to the following kind
of limit:

+ T
lim Jl dt e '"r(z(t))M(S(t)) lo).T- 2T —T

This expression depends only on the initial condition
zo. On the basis of the properties of the exact propaga-
tor, one expects the limit to be nonzero only when
E =H(zo) is an energy eigenvalue. In that case, the
value of the limit should be an energy eigenstate.

Unfortunately, the limit (3) fails, in general, to yield
sensible answers, because of the wave-packet spread-
ing governed by M(S(t) ). After a finite time, a wave
packet wi11 have spread so much that it can no longer
be considered a wave packet, just as a localized bunch
of particles will spread in classical mechanics. Further-
more, even if z(t) is periodic, the integrand of (3)
will not be, even to within a phase factor, again be-
cause of the spreading. The classical analog of this fact
is that orbits which are near a given periodic orbit do
not usually have the same period as the given orbit,
even when they themselves are periodic. Therefore,
classical bunches of particles do not have periodic time
behavior, even if individual particles do.

Nevertheless, one can extract semiclassical energy
levels and eigenfunctions from the same kind of
reasoning which went into the unworkable limit (3).
The trick is to use the fact that if two operators com-
mute, then they possess simultaneous eigenstates.
Supposing that the classical motion is integrable, we
can find action variables I i (z ), . . . , I~ (z ), which
have vanishing Poisson brackets with each other and
with the Hamiltonian H (z ), i.e. , [ It„l&] = 0 and
[I„,H]=0. If these action variables are converted
into quantum operators I&, . . . , Iz by the Acyl
correspondence, then, to within a relative error of
0 (tl' ), we will have [It„lt]=0 and [I„,H] =0, in ac-
cordance with the Groenewold-Moyal6 formula.
Therefore, in a semiclassical sense, we expect the
simultaneous eigenstates of the actions to exist, and to
be simultaneously energy eigenstates. I shall denote
these states by ~

n i, . . . , n~), so that

~ nw) =It, „~ni ~ nw)

where nI, is the quantum number of the operator lA. .
These states are to be found by Fourier transforma-

tion of the propagators corresponding to the N opera-
tors It, . Let us first pick one of these operators I„,for
fixed A;, and denote the corresponding parameter of
evolution by A. , so that the exact propagator is
Vg (li. ) = exp( I li. lg ). Tl11s propagator ls co11vefted
into a semiclassical, wave-packet version„

l „(.,;~) =."'"'- "~(.(~))M(S(~))I'(.,)',

exactly as in Eq. (I), with H, t replaced by I„,X. The
quantity J is I„(zo),and z(A. ) is the orbit obtained by
treating II, (z ) as a Hamiltonian.

As before, Eq. (4) is applied to a state
~ po)

= T(zo) ~0), and Fourier transformed in h. , with the
action parameter of the Fourier transform being taken,
for simplicity, to be J = 1„(zo).Again, one is led to a

limit,

p+A
lim J dZe"'"'&(z(Z))M(S(&)) I0). (5)

2A

Now, however, the limit does make sense. Action
variables have the property that all orbits generated by
them are periodic, with period X = 2m. Furthermore,
since the period is independent of initial conditions,
nearby orbits have the same period as any given refer-
ence orbit, and therefore the symplectic matrix
S (li. ) = Bz (zo, li. )/Bzo is itself periodic. Thus, we have
z (X+2m ) = z (X) and S(),+ 2m) = S(X). The meta-
plectic operator is periodic to within a phase of 1, so
that M(S(A. +27r) ) = e 'i' zM(S(li)), where the
Maslov index9 p, is an even integer. [Here the Maslov
index is twice the homotopy class of a 2' period of
S(li.) in 7ri(S p( 2%)).] Finally, we have u(X+27r)
=u() )+2~J.

Therefore, the integral of (5) over a single 27r

period of the parameter A. is a simple phase factor
times the integral over the previous period. This fac-
tor is exp(2miJ —

p, 7ri/2), and the limit (5) can be
nonzero only if this factor is unity. Therefore we ob-
tain a quantization condition,

It,.„=a+i t/4

where I have identified J with the eigenvalue of It„
and subscripted the Maslov index, since it is a charac-
teristic of the orbits generated by l„(z).

Equation (6) represents the Einstein-Brillouin-
Keller quantization conditions. Once the actions are
quantized, the energy eigenvalues are determined by
expressing the Hamiltonian as a function of the ac-
tions, H = H(li, . . . , I~), and writing E„,
= H (Ii „,, . . . , I&„). Thus, the wave-packet evolu-

tion developed by Heller implicitly contains the
Einstein-Brillouin-Keller quantization conditions, if
only one propagates in the actions instead of the Ham-
iltonian. Although this is the same result obtained by
eikonal approaches, one should note that no considera-
tions of caustics have entered into this analysis.
Furthermore, it is simpler and more stable numerically
to determine the Maslov index directly from S(A, )
than it is to count caustics.

The energy eigenvalues are the same by this method
as with the Keller-Maslov" ' method, but the eigen-
states are different. Equation (5) taken over a single
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period gives an eigenstate of I», denoted by ~ n»),

+ 271u(„e"""T(z(z, ;(„))M(S(z,;(»))~0),

(7)
~here I have subscripted A. and carefully indicated
dependencies. The initial conditions zo are chosen so
tliat 1»(zo) =I„„.The state ~n») is an average of the
wave packet )0) over the closed orbit of I» passing
through zo, and its Wigner function is concentrated on
this orbit in phase space, in the manner of a ring.

To find a simultaneous eigenstate of I» and another
action, say I(, denoted by ~n&n(), we can apply the
piopagatoi V((g() = exp( —i &(I() to )in»), and take the
Fourier transform in X(. Although the ring state ~n»)
is not a wave packet, the integrand of Eq. (7) is, and
so this exact propagator can be brought inside the in-
tegral and replaced by its semiclassical, wave-packet
equivalent. This is just as in Eq. (4), with k replaced
by I and zo replaced by zi =z(zo, x»). The Heisenberg
operator T(zi) cancels with the Heisenberg operator

in Eq. (7), bringing two metaplectic operators adjacent
to each other. In the remaining Heisenberg operator,
there appears the function

z(zo, k», X() =z(z, ,)() =z(z(zo, a»), X(),

which is the position in phase space one obtains by
starting at zo, following an Ik orbit for parameter value
A.», then an I( orbit for parameter value A.(. Since
( I» I( I = 0, these propagations can be applied in either
order, with no effect on the final point. The two-
dimensional surface swept out by varying A.», k( is a
two-torus. It is also an "isotropic" submanifold, "
which means that the line integral for n(A. ), with the
same integrand as in Eq. (2), is invariant with respect
to continuous deformations of the path on this surface.
Therefore a(zi, A()+n(zo, (i.») depends only on the
end points, and can be written n(zo, A», A.().. Finally,
the two metaplectic operators can be combined, by use
of the rule M(Si)M(S2) = M(S(Sz). The product of
the two symplectic matrices which results is just the
derivative Bz(zo, h», X()/Bzo, which I denote by
S (zo, k», X(). Altogether, one obtains a state which is
an average of the wave packet ~0) over the two-torus
in phase space,

fo 2s' p 2s' I'a(so', hk, A f))n»n(&=„', „,d(»dZ(e ' ' ' T(z( o,z(», (())M(S(zo, l~», &())10), (8)

where now zo is assumed to lie on quantizing contours of both I» and I(.
Proceeding in this manner, we can finally construct the simultaneous eigenstates of all the actions, as an average

of a wave packet over the invariant W-torus. It is

[ni, . . . , n & =„~d P
e' " T(z(zo, X))M(S(zo;(~.))10&, (9)

where now X represents ((i.i, . . . , (i.(v). This state is
free of caustic singularities. Its wave function is a uni-
form approximation to the exact energy eigenfunction,
with the single formula (9) being valid at all points of
configuration space, including caustic and evanescent
regions. It is quite similar to some semiclassical eigen-
states produced by Davis, DeLeon, and Heller, 2 5 and
differs primarily in its treatment of wave-packet
spreading and the Maslov phase shift. Those authors,
recognizing that wave-packet spreading would make
the formula (3) unworkable, artificially "froze" their
wave packets, even though such a step is not directly
justified on dynamical grounds. They also employed
various reasonable but essentially ad hoe methods for
incorporating the Maslov phase shifts. On the other
hand, the wave packets in Eq. (9) follow the dynamics
dictated by the action variables, with no further as-
sumptions required. Thus, their spreading is quasi-
periodie, and the Maslov phase shift is automatically
incorporated.

The eigenstate (9) depends only weakly on the fidu-
cial state (0), as long as the latter is reasonably chosen.
For example, the approximation inherent in the propa-
gator (1) will be invalidated if the Wigner function of

)0) is very long and thin in phase space.
There are several significant aspects to these results.

First, the theoretical foundation of wave-packet tech-
niques is extended. Second, a deeper understanding is
provided for some of the computational successes of
Heller and co-workers, especially those using "frozen
Gaussians. "5 Third, the basis is laid for a semiclassical
theory of symmetries and invariants, since little of the
analysis above has depended on there being a complete
set of actions in involution. Less than complete sets
often occur in applications, as in systems with rotation-
al symmetry, or with some degrees of freedom which
possess good Kolomogorov-Arnol'd-Moser tori, and
others which do not. I will elaborate on the analysis
above and further explore these issues in subsequent
publications.
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