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%e sketch the proof of an existence theorem for a time-dependent density-functional theory on
the set of N-representable densities, extending the constrained-search formulation of Levy into the
time-dependent domain, and add a brief comment on practical issues.
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Stationary density-functional theory (DFT) is well

established as a powerful tool to discuss ground-state
properties of Coulomb systems and atomic nuclei. '

Formal justification of this theory is provided by the
theorem of Hohenberg and Kohn. 2 The universal
functional of Hohenberg and Kohn (HK) is, however,
defined only for densities that are v-representable.
For purposes of variational approaches there thus
remains the question of whether the domain of the
HK functional is adequate. The question has been
resolved in two points. Kohn' was able to show for
problems defined on a cubic lattice that the set of u-

representable densities is dense. On the other hand,
Levy demonstrated in his constrained-search formula-
tion that there exists a proper universal functional
representing the kinetic energy and the two-particle in-
teraction, which is N-representable and reduces to the
HK functional for u-representable densities.

For the discussion of scattering and excitation
processes, an extension of the theory to time-
dependent (TD) situations is required (see, e.g. ,
Lundquists). On the level of existence theorems a
general TD extension of the HK theorem has been es-
tablished recently by Runge and Gross. ' This
theorem supersedes earlier efforts for restricted classes
of problems with periodic potentials or small TD
perturbations. ' The functionals of Runge and Gross
are, like those of the original HK formulation, only
defined for v-representable densities. %e note that
there have been objections concerning some technical
details of the proof in Ref. 6, which gave rise to some
controversy. " In this note we briefly sketch a simple

proof of the existence of a TD DFT on the set of %-
representable densities, which reduces in the station-
ary limit to the scheme of Levy. To be specific, we
sketch the theorem for a scattering situation in a
Coulomb system. At time t =0 the ground state of
the electrons is characterized by the Hamiltonian

H= T+C+ V(t=0).
A

[T is the kinetic energy, C the Coulomb repulsion, and
V(t =0) the external potentials. ] For later times we
have

H(t) = T+C+ V(t).

Let ~Vo) be the initial ground state and ~W, ) the
solution of the TD Schrodinger equation that develops
from this state. We attempt to show that

(e, ~O ~+, ) = 0 [p(t) ],
)h

that is, the expectation value of an operator 0 can be
considered to be a functional of the TD one-particle
density. The proof proceeds by explicit construction.

Let P be the set of %-representable densities at an
arbitrary time t. For each trial density p & I', construct
the (auxiliary) set S~ containing all antisymmetric N-

particle states giving the density p at time t. This set
usually contains a large number of states. As p is as-
sumed to be X-representable, it will at least contain
one state. The task is to select, in a reasonable way,
one state ~+) 6 S~t' with which the expectation values
can be calculated and the functionals be defined. %e
set up the selection principle in two steps.

1986 The American Physical Society



VoLUME 56, NUM@BR 19 PHYSICAL REVIEW LETTERS

we use the selection principle

K[p]= inf inf (%~K„(t)~%).
I~) qgP F68'

(2)

To avoid the situation that two states ~'II'&), ~W2) C S~~

can be mapped onto the same initial state by two
A A

operators U„, and U„,, one must consider all elements

in IV differing only by a time-dependent function as
being equivalent.

In principle, the (rather strange) case could occur
that for two states ~%'&), ~%'2) C S~~ one has

inf (%t ~K„(t)[et) = lnf (%2[K„(t)~e2).
vE +' jr' W'

If degeneracies of the initial ground state are excluded,
however, this can never happen on the set S+~ if p is
thc true density. For an arbitrary density p the states
~WI) and ~'Ir2) for which this happens should be ex-
cluded from S~~ to make the functional unique.

We add the following remarks:
(i) At time t =0 we have U„(0)= I for all u C 8',

thus the principle (1) as well as (2) reduce to the con-
strained search recipe of Levy with

g [p] = K [p] —
JI Vp d'r.

(ii) For u-representable densities the functionals de-
fined via Eq. (2) contain those of Ref. 6.

(iii) We recall that even for time-independent sys-
tems, there are still a number of open questions con-

Define the operator

K(t) = U(t) [T+6+ V(t =0)]U (t),
U (t ) being the full time-evolution operator of the sys-
tem. With each state ~%") C S~~, calculate the matrix
element ( Ir)K(t) )'It).

As K (t ) provides an isospectral deformation of the
ground-state Hamiltonian, ' the selection can be based
on the usual Rayleigh-Ritz principle. The correct state
is selected from 5+~ via

K [p] = inf (~~K(t ) ~+). (I)
I1p) f $P

The functionals O[p] defined with the help of the
states determined in this way are, however, not
universal. The operator K (t ) depends on V (t ) via
U(t) and hence on the history of the system for a
given external potential.

To construct a universal functional of the density

p C P we consider the set of potentials W which con-
tains all TD potentials u(t) such that u(t =0) = V(t
= 0) and for which a time evolution operator U„(t )
with the Hamiltonian H„= T+ C + u(t) exists. De-
fining the operators

K„(t)= U„(t)[i +C+ V(t =0)]U„(t), u e lV,

H(t)= g, H„,
k 0&

I(t) = f,i„.
k —0

(6)

Introduction of Eqs. (6) into Eq. (5) leads to a recur-
sion formula for the operators I„,

1

A A

n+1 ~ ic [Ik~Hn —k]~
k=o i

A A

Io= Ho-

cerning mathematical rigor (see, e.g. , the contribution
of Lieb in Ref. I). We do not claim to have covered
all the points which a rigorous approach will have to
address. For example, we have not touched the ques-
tion of domains for the operators K„and O.

(iv) Existence theorems of the HK type do not
readily provide a practical guide to the construction of
the functional in question. The time-independent
constrained- search formulation, on the other hand,
has been implimentcd directly by Zumbach and
Maschke. " One can hope that the search recipe (2)
could open the way for an analogous approach in TD
DFT, although some new ideas will be needed to make
it a working tool.

(v) Presently there is a trend to treat explicitly
time-dependent systems within the phase-space for-
mulation of quantum theory. It should be obvious,
then, that the sketch of an existence theorem for TD
DFT implies that in principle all information can be ex-
tracted from the one-particle Wigner function. This
may help to give a conceptual basis to several (ad hoc)
truncations of the quantum Bogoliubov-Born-Green-
Kirkwood- Yvon chain.

%e ~ould like to point out that invariant operators
like K(t) do give some insight into how functionals
can be set up in a practical situation or, at least, which
specific problems may appear in their determination.
To illustrate this point briefly we confine ourselves to
a system of noninteracting particles evolving from a
ground state by an external time-dependent potential
V (t). The density operator for such a system is

p(t ) = U(t )e(~„H(t = 0)—) U'(t)
= e(eF —I(t)), (4)

eF being the Fermi energy of the ground state. The
operator 1(t) = U(t)H(t =0) U (t) satisfies the
equation of motion

t Bi/dr + [iH(t ) ] = 0,

I (t =0) = H(t =0).
There are time-integrable systems for which the solu-
tion of this equation can be given (e.g. , Kohl and
Dreizler' ). The corresponding density operator (4) is
then the starting point for the determination of the
functionals. To obtain some idea as to what happens
in the general case, assume the Ansatz
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In principle, this recursion formula gives a Taylor
series expansion of I(t) up to arbitrary order. Consid-
ering for simplicity a one-dimensional system, one has

S(t) = — + V(q, t =0)2'
it+ [p', I ], ,+. . . .

4m@

Using the 1=0 limit of the time-dependent Wigner
function H(e —1(p,q, t)), I(p, q, t) being the Weyl
transformation of the first three terms in Eq. (8), one
can derive, e.g. , the functional for the kinetic energy
density:

h 3 m jr [p,jl = p'+ ——,
24m 2 p

'

j being the current density of the system. As follows
from the derivation, this functional holds strictly only
for short times after the time dependence of the Ham-
iltonian sets in. A detailed investigation of several
specific situations like adiabatic and sudden transition
systems is in progress.

The main topic of the present paper was, however,
to point out that operators like K (t) and K„(t) as de-
fined in the text can be used to define a minimum prin-
ciple on a set of time dependen-t states (searching over
equivalence classes of density operators is possible
too). There are still many technical questions to be
answered in further work on the subject, as, for in-

stance, how the set 8' of time-dependent potentials
u(t) should or could be reasonably constrained and
defined more explicitly.

Note added. —It follows directly from Eq. (2) that a
possible degeneracy as indicated in Eq. (3) cannot oc-
cur if p is a u-representable density. Furthermore, if
one is willing to do without the condition of universali-
ty of the functionals, the search recipe (1) is sufficient
and does lead to a unique state ~V '"(t)) C Sf in any
case. In fact, the situation is rather tricky and there

are several good reasons ~hy the concept of universal
functionals for time-dependent systems will play a less
important role in genera/ practice than in the time-
independent case.
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