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The band-gap problem is studied for an exactly solvable semiconductor model. The exact
exchange-correlation potential is constructed and its discontinuity is studied. Depending on the
parameter range, a large or a small discontinuity is obtained. The "scissor-operator" method is

compared with the local-density approximation for an impurity calculation. In general, the local-
density approximation is closer to the exact solution. Some general features of the density-
functional formalism are illustrated.

PACS numbers: 71,45.6m, 71.25.Rk, 71.55.—i

The local-density (LD) approximation in the
density-functional (DF) formalism gives a substantial
underestimate of the band gap in semiconductors. 2

This is a major problem in impurity calculations, since
the impurity states depend sensitively on the size of
the band gap. A crucial question is therefore if and
how one should correct for this band-gap problem in
LD calculations. It was recently realized by Perdew
and Levy3 and by Sham and Schlciter that the true
band gap defined below need not be equal to the ener-

gy eigenvalue gap in an exact DF calculation, because
of a discontinuity in the exchange-correlation (XC)
potential as a function of the number of electrons. '
This raises the question if the underestimate of the
band gap in the LD approximation is mainly due to

this discontinuity or to the LD approximation itself.
To address these issues, we consider an exactly solv-

able model with and without an impurity. For this
model we introduce a DF formalism and a LD approx-
imation. By comparing the true band gap with the
eigenvalue gap in the exact and approximate DF calcu-
lations, we determine the importance of the discon-
tinuity for the model. The exact results for the model
with an impurity are compared with the LD results and
with the results obtained after the band gap has been
"corrected. " This provides a test of methods for solv-
ing the band-gap problem.

As a model we use a finite linear chain of M atoms
with two nondegenerate levels, which may be under-
stood as s and p levels. Thus we consider the Hamil-
tonian

0= E 0; + Pl'1' 2+ 1;1 ' —l l+ 2;2 ' —1 2+ 3;2 ' —l1 3 '1 ' —1 2+8
i =1~=1

+ ( t4fiir 2/i i + t5 ttl 2$itf i + H.c.),

where e, is the energy of the n level (i.e., s or p) on
the i th atom. The second term describes the Coulomb
interaction U between two electrons on the same
atom. If t t ( 0, t2 & 0, and t3 & 0, we can interpret
the terms containing tl, t2, and t3 as s-s, p-p, and s-p
hopping, respectively. The terms containing t4 and is,
which connect the end points, have been introduced to
remove some degeneracies. Alternatively, we can set
ti=t2„ t3=t4 t5=0, and e——, =0. Then the model
reduces to a Hubbard chain, with 0. being a spin index.
To describe an impurity on the site i =io= (M+ I)/2
in the model (I), we make the replacement

—6 V.I ggt

To solve this model exactly, we consider all possible

configurations with N electrons and calculate the cor-
responding Hamiltonian matrix. For N =M =9 the
matrix size is 48 620 x 48 620. By using a site represen-
tation for the configurations, we obtain a very sparse
matrix and the lowest eigenvalues and eigenvectors
can be obtained rather easily. This gives the occupa-
tion numbers n; for the exact ground state. In this
model the energy levels e, play the role of the exter-
nal potential u, „,(r) in the normal formulation of DF
theory. In the "DF theory" for our model (1) the oc-
cupation numbers n; are therefore used as the basic
variables instead of the density n (r). To obtain the
exact XC potential v;"', we replace e; by an effective

1968



VOLUME 56, NUMBER 18 PHYSICAL REVIEW LETTERS 5 MAv 1986

potential v, which is varied until the exact n; are
obtained for the noninteracting system. This defines
the exact

apart from a constant. This constant is fixed by the re-
quirement that the highest occupied eigenvalue is
equal to the exact first ionization potential. 5 6 The sys-
tems which have been studied are v-representable in
the sense that we could find numerically a v ~r which
gives the n; prescribed.

We define a LD approximation as
M

E.", l~,.] = —CUX(n„+ &„)4~3, (2)
i

which contains the density to the —,
'

power, a depen-
dence typical for local approximations. The prefactor
C = 2 "~3 is fixed so that (2) is exact for a filled band
(W = 2M).

%e now demonstrate within our model l3F theory
that a discontinuity in the XC potential can contribute
to the true band gap

Eg ——Eo (M + 1 ) + Eo (M —1)—2EO (M), (3)

where Eo(N) is the ground-state energy of a system

with N electrons. %e consider a Hubbard chain with
periodic boundary conditions in the limit X = M
Then the exact n; = —,

' (no spin polarization) and u'r"

is a constant. The exact DF treatment therefore does
not given an energy eigenvalue gap. The half-filled
Hubbard chain is, ho~ever, a Mott insulator. The gap
is therefore entirely due to the XC potential discon-
tinuity, 9 in agreement with earlier arguments. Re-
cently, an explicit formula [Eq. (14) in Ref. 4] for the
exchange-correlation potential discontinuity was pro-
posed. We have demonstrated that this formula van-
ishes identically. ' The example above shows, howev-
er, that the discontinuity is not, in general, zero, and
that therefore the formula in Ref. 4 is not correct. '0

With parameters more appropriate for a semicon-
ductor (r~ & 0, t2) 0, t3%0 ~ "2) e;~), the exact DF
eigenvalue gap is close to the exact gap Eg, while the
LD eigenvalue gap is substantially smaller. Thus,
within the same model we can obtain the situation
~here a poor LD gap is primarily due to the LD ap-
proximation itself, as well as the situation where it is
due to the discontinuity. Below we study both these
cases.

Table I shows results for the Hubbard chain as a
function of U. The exact XC energy E„, is compared
with the difference

) —Ux(( ) + ( ) )'I2

between the interaction energy and the "electrostatic"
energy, where the angular brackets indicate the expec-
tation value for the exact ground state. We also show
the "kinetic" energy, which is defined as the expecta-
tion value of the hopping terms in Eq. (1). T;„, is cal-
culated for the exact solution of (1) and T„,„;„,is ob-
tained for a noninteracting system (U =0) with the
same occupation numbers. iE„,i is appreciably smaller
than iE;„,i, since E„,=E;„,+ T;„,—T„,„;„,by defini-
tion contains a kinetic energy contribution. This con-
tribution is positive, since the correlation of the elec-
trons in the interacting system leads to an increase in
the kinetic energy. E„, can be expressed in terms of
E,„,(U) as"

E„,= J
dU' E;„,( U')/U'.

i In Table I the integration is performed with use of the
trapezoidal formula with the step dU'= 1, which gives
good agreement with the exact E„,. The LD result
ELn for the XC energy is more negative than the exact
result.

The Hubbard chain with a substitutional impurity is
considered in Table II. In addition to the exact and
LD results, we show results of a calculation ("Sciss")
using the "scissor operator, "2 which shifts the unoc-
cupied levels of the system without an impurity by an
amount E„so that the LD eigenvalue gap agrees with
the exact gap. Finally, Table II shows results of a cal-
culation ("Sciss corr"), where the scissor operator is
used to generate the occupation numbers, but the en-
ergy is evaluated by use of a pure LD functional

TABLE I. Results for a Hubbard chain. The parameters are M=9, r~
——I2 ——15 ———1,

t3 = t4 = 0, e, = 0, and 4 V = 0. All energies are in electronvolts.

Tnonint f dU'E, „gu'

—5.89
—9.93

—14.64
—19.30

—5.20
—8.33

—11.80
-15.54

—7.14
—10.72
—14.29
—17.86

—10.42
—9.50
—8.24
—7.33

—11.11
-11.11
—11.11
-11.11

—5.20
—8.33

—11.80
-15.53

0.61
0.96
1.52
2.24
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TABLE II ~ Results for a Hubbard chain with an impurity
with 5 V= —3 and U=5. The other parameters are the
same as in Table I. A11 energies are in electronvolts. i 02

102
096
099
096

Exact
LD
Sclss
Sciss corr

0,91
1.24

—0.74
1.21

0.81
0.54
0.49
0.49

—2.38
—2.38
—4.22
—2.40

—0.58
—0.13
—0.18
—0.18

g
6)

lh
Q) 2
CA

—4—
LLj

100
105

without the scissor operator. ' ' %e consider a donor
(N = M + 1 for the neutral impurity system), since the
effect of the scissor operator is smaller for an acceptor.
Ea is the energy difference between the systems
without and with an impurity, and An is the increase
of the charge on the site where the impurity is intro-
duced. I~=Ep(M) Eo(M+1) is the ionization po-
tential of the impurity system, and hn' is the change
in the ground-state charge on the impurity site when
the impurity is ionized. The energies (Ea, l~) are
better described in the LD approximation than with
the scissor operator. The energy of the (M + 1)-
electron system is higher when the scissor operator is
used, because at least one electron feels the repulsive
nonlocal "scissor operator potential. " The exact Xc
potential is very attractive on the impurity site for the
(M + 1)-electron system. Neither the LD nor the
scissor-operator approximations can describe this, and
both give too small values of b, nn. Both these approxi-
mations fail to give a proper description of Anl The.
corrected scissor-operator method and the LD approxi-
mation give similar results.

We now consider the model (1) with parameters
more appropriate for a semiconductor. Figure 1 shows
the eigenvalues in the exact DF formalism (e; DF)
and the LD approximation (a, LD) for a system
without an impurity. The LD eigenvalue spectrum has
been shifted so that the top of the valence band agrees
with the exact DF calculation. There is a good agree-
ment between the exact energy gap Fg and the exact
DF eigenvalue gap (deviation 0.5%), which shows that
the discontinuity is very small in this case. The poor
LD eigenvalue gap is therefore mainly due to the LD
approximation itself. Small values for the discontinui-
ty were also obtained for the other sets of "semicon-
ductor" parameters studied as well as for some modifi-
cations in the form of the Hamiltonian (1).

In the exact DF formalism the highest occupied
eigenvalue gives the ionization potential, while the
other eigenvalues in general do not give excitation en-
ergies. It is nevertheless interesting to compare the
eigenvalues with the energies of some excited states,
lE„(M —1)) and lE„(M+1)), which evolve from a

-8—
Excitations c;DF c; LD

FIG. 1. The eigenvalue spectra (e;) and some exact exci-
tation energies for a semiconductor model without an im-
purity. The parameters are M = N = 9, tI = —1.8, t2 = 1.0,
t3= —1.2, t4= —tg ——t3, U=4, ~;I = —4, and ~;2=0. All
energies are in electronvolts.

and consider some states'' for which

M„= (E„(M 1) l7 lEo(M) )—

and

M„' = (E„(M+1)l~' IE,(M))

are large. The corresponding energy differences,
Eo(M) —E„(M—1) and E„(M+ 1) —Eo(M), are
shown under "Excitations. " These energies, for in-
stance, provide the values of I~ and Eg. The figure
shows that there is a remarkable agreement between
the exact energy differences and the exact DF eigen-
values. The LD hole spectrum [E„(M—1)] is slightly
compressed relative to the exact results, as tends to be
the case in realistic band-structure calculations.
Although the eigenvectors obtained in the DF formal-
ism in general cannot be used to calculate matrix ele-
ments, ' we have formed Slater determinants and
evaluated M„and M„+. The numbers at the levels
give the ratios to the exact results. Again we find a
surprising agreement. For the Hubbard chain, on the
other hand, there is a large disagreement between the
DF eigenvalues and the exact excitation energies as
weil as between the corresponding matrix elements.
This is consistent with the observation that for systems
with strong correlation effects, e.g. , many rare-earth

noninteracting state if an electron is removed or added
without the creation of electron-hole pairs. To select
such states we introduce

M

~i1 '1+ ~i2 j2
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TABLE III. Results for the semiconductor model with an

impurity with 5 V= —4. The remaining parameters are the
same as in Fig. l. All energies are in electronvolts.

v

Exact
LD
Sciss
Sciss corr

4.13
3.84
2.55
3.81

0.78
0.53
0.50
0.50

1.07
1.45
2.57
1.44

0.47
0.09
0.14
0.14

compounds, the LD eigenvalues give an unsatisfactory
description of excitation energies, while for many oth-
er systems the description is better than originally ex-
pected.

Table III shows results for an acceptor substitutional
impurity in the semiconductor chain. We present
results for Es, 4n, and hn' and for the separation

eb —ay=En(M+1) +ED(M —1) —2Ea(M)

of the impurity level from the top of the valence band.
As for the Hubbard chain, we find that the LD approx-
imation gives better results for the binding energy Es
than the scissor-operator method. In the LD approxi-
mation, the gap state eb is somewhat too far above the
top of the valence band. Since the band gap is too
small, the gap state is too close to the bottom of the
conduction band, and the state is too extended. This
is illustrated by the small value of b ni. In the scissor-
operator method the conduction band is raised by 1.2
cV. Since, however, the gap state is mainly derived
from the conduction band, it tends to follow the con-
duction band and it remains too extended. The value
of hn' is therefore not substantially better than in the
LD approximation. For the chain without an impurity,
the exact u"' is in this case about 3 eV higher for the
essentially unoccupied state (p level) than for the s
level. %hen the impurity is introduced also, the p
state on the impurity site obtains a large occupancy in

the exact solution. The exact u"' is then similar for
the s and p states on the impurity site. As far as the
mainly occupied states are concerned, the LD approxi-
mation therefore gives a better simulation of the exact
v"' than the scissor operator.

In conclusion, wc have studied a finite, one-
dimensional model with a short-range interaction. The
Hubbard limit of this model demonstrates that the
discontinuity in the XC potential can give a large con-
tribution to the band gap. The XC discontinuity is,
however, small in this model, if parameters more ap-
propriate for a semiconductor are used. %e have com-
pared the LD approximation with the scissor-operator

method for impurity calculations and found that for
the model considered the LD approximation generally
gives better agreemcnt with the exact solution.
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