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Sensitivity of the Conductance of a Disordered Metal to the Motion
of a Single Atom: Implications for 1/fNoise

Shechao Feng and Patrick A. Lee
Department ofPhysics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

A. Douglas Stone
Department ofPhysics, State University ofNew York, Stony Brook, Stony Brook, New York 11?94

(Received 25 February 1986)

%e show that the conductance of metals is sensitive to the motion of a single scattering center.
At zero temperature and in two dimensions, the motion of one strong scattering center induces
changes of the conductance of order e /h, independent of sample size. Vt'e discuss the implications
of this result for room-temperature 1/f noise in disordered metals and we predict an anomalous
low-temperature 1/f noise in metallic glasses, due to two-level systems.
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Recently it has been found both experimentally' 3

and theoretically4 9 that the electrical conductance in
disordered metals exhibits fluctuations as the magnetic
field B or the chemical potential iM, is varied. The rms
magnitude of these fluctuations for a given sample is
the same as that from sample to sample and is of order
5G = e2/h, independent of the degree of disorder, the
sample size, and spatial dimensions, provided the tem-
perature is low enough that the inelastic scattering
length L;„ is larger than any of the sample dimensions.
L;„=(Dr;„)'12 is the distance an electron diffuses dur-

ing the inelastic scattering time 7;„ if D is the diffusion
constant. It is to be emphasized that such fluctuations
are not time-dependent noise. Instead, the conduc-
tance G(p. ,B) is a deterministic, albeit fluctuating,
function of its arguments, for a given realization of the
impurity configuration.

The surprisingly large conductance fluctuation leads
naturally to the following question: How sensitive is
the conductance of a given metal to a small change in
the impurity configuration? We provide an answer to
this question in this Letter and our main result can be
summarized very simply as follows. Suppose we have
a small metallic sample of size L. By metallic we mean
that the elastic mean free path i is small compared with
the sample length L, which is much less than the local-
ization length. At low temperature such that the ine-
lastic diffusion length L;„ is large compared to L, if one
impurity atom is moved a distance & r ) kF, the con-
ductance of the sample will change by the order
&Gi = e /h in one and two dimensions, and SGi =
(e /h)(l/L)' in three dimensions. In one and two
dimensions, ~e have the novel result that the conduc-
tance fluctuations induced by moving a single scatter-
ing center are as large as those produced by changing
the entire sample! Small ( —0.5%) discrete conduc-
tance jumps have been observed in quasi one-
dimensional metal-oxide-semiconductor field-effect
transistors and attributed to the filling of individual

trap states in the oxide which affects the electron mo-
bility. to Our present result predicts quantitatively the
magnitude of the conductance fluctuation and, more
importantly, shows that it is not simply a finite-size ef-
fect observable only in ultrasmall samples.

Our result can be understood by a simple physical
argument. Conductance is proportional to the quan-
tum-mechanical transmission probability through the
sample, "which in turn can be understood in terms of
interference between classical Feynman paths through
the sample. 6 For a disordered material, the Feynman
paths are random walks with step size l. The number
of sites visited by each Feynman path that crosses the
sample is (L/l)2. In two dimensions this means that
each path visits a finite fraction of the sites, or, alter-
natively, a finite fraction of all Feynman paths pass
through a site. The motion of a single strong scatterer
will alter the phase of all the Feynman paths passing
through that site. The resulting interference will be
completely altered so that the motion of a single strong
scatterer has the same effect as altering the entire im-
purity configuration. In d~2 dimensions, a fraction
(L/l)2 ~ of the Feynman paths passes through a
given site. With the additional assumption that the
contribution to the transmission amplitude due to this
fraction of the paths is statistically independent from
the contribution of the remaining paths, we conclude
that the change in the conductance is of the order
SGi = (e /h) (L/I) t ~1/ . This last assumption is by
no means obvious, because we know that correlations
between Feynman paths are required to produce the
universal conductance fluctuations. 6 9 Nevertheless, it
appears that sufficient correlation has been built into
the partial summation over the Feynman paths passing
through a given site that this argument produces the
correct answer. Finally we note that in quasi one-
dimensional systems, each Feynman path actually
visits a given site many times, so that the motion of a
weak scatterer, or a slight motion of a strong scatterer,
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can accumulate sufficient phase shift to change the
conductance by e2/h.

The quantitative calculation is a straightforward ex-
tension of our previous model. 5 We assume our sys-
tem to be a general rectangular box in d dimensions,
with a volume 0=L„. . Ld iL,. The current flows
in the z direction, which is extended to + ~ by attach-
ing ideal "leads. " The electrons are treated as nonin-
teracting quasiparticles; we have shown elsewhere6
that to leading order in (kFI), interaction effects are
accounted for by the introduction of a i;„due to elec-
tron scattering. Let ( r; ) (i = 1, . . . , N; ) be the posi-
tions of the impurities. We consider the conductance
change induced by moving one impurity scattering
center a distance &r, i.e.,

(8G, )'=((G{ri, . . . , r~, I
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where G is the system's conductance. The average in
Eq. (1) is taken over the random distribution of im-
purity positions (r, ). Let us first assume that
L;„&L„, . . . , L~, ,L, . Equation (1) can be evaluat-
ed and we work to leading order in the perturbing po-
tential. It is easy to show that the Feynman rule is to
insert a new vertex connecting the two conductivity
loops into the diagrams of Ref. 5. For example, Fig.
1(d) is the most important modification of Fig. 1(b) of
Ref. 5. The new vertex is denoted by a diamond shape
and, for a momentum transfer k, is given by

V, (k) = ( u2/N, ) Re [1—exp( ik sr ) ], (2)

where u2 is the impurity scattering strength related to
the elastic scattering time by v

' =2mn(eF) u, n (eF)
being the density of states per spin.

We note that the effect of introducing the vertex Vi
is to introduce an extra diffusion pole in the evaluation
of the diagram so that the result is more singular by a
factor L2. Combining this with the vertex [Eq. (2)]
which is proportional to N&

' —L ~ gives the size
dependence 5Gi2 —L2 ~ discussed earlier. Similar
modifications of other diagrams in Ref. 5 give contri-
butions of the same form. We give the result for
several geometries accurate up to a numerical con-
stant.

For hypercubes, i.e., I & L =. . . =Lz i=L, =L
&L;„,

(SG,)'= ( '/h)'(0/N, l )(L/I) a(kp5r), (3)

a(x) = 1 —(sin —,
' x/ —,

' x)'.
Usually the individual impurity scatters strongly, in
which case the factor (0/N&l ) = 1. If kF&r ~ 1, then
a = 1, and Eq. (3) gives the results quoted in the in-
troduction.

If more than a single atom is moved, the effect on
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F16. 1(a) The rms deviation of the conductance (in units
of e2/h ) of an L x L Anderson model ( lV/ V =4) upon in-
terchange of the 1ocal energy of two sites. The rms devia-
tion for a complete configuration change is 0.86 (Ref. 5).
(b) 8Gi of an M& L Anderson model (M=25, 8'/ V=1)
as the site energy of a single site is changed by IV/2 plotted
vs the aspect ratio L/M (c) G(8) for 40X40 Anderson
modei vs 8 in units of h/e normal to the sample. Solid and
dashed curves correspond to impurity configurations which
differ only by the interchange of a pair of sites. (d) A typical
diagram that contributes to (5Gi)'. Dashed lines denote
impurity averaging and the diamond denotes the vertex [Eq.
(2)] which represents the motion of a single impurity.

Eq. (3) is simply additive as long as 5Gi « e2/h. Of
course, in general SGi is bounded by e2/h, which is
the rms change for a complete rearrangement of the
impurity configuration. This bound is important for
the motion of more than one impurity in d ~ 2 and for
d = 1. Mathematically this bound appears as a break-
down of our perturbative treatment of the vertex Vi,
since repeated insertion of the diamond vertex in Fig.
1(d) will generate a series in powers of a (L/I) 2

For thin films (L„«L»,L, ), if I & L, the film
thickness, we replace the factor (L/I) d in Eq. (3) by
I/L„. For wires (L„—L» « L,), if I & L,L„, we
make the corresponding replacement by L,I/L„L».
This enhancement factor is due to multiple visits of a
Feynman path to a given site. Thus in wires even
small atomic displacement (kFSr « 1) can produce
the saturation effect of SGi = e /h.

We test Eq. (3) for d=2 by numerical calculations
of G for a nearest-neighbor tight-binding model with
random site energies (the Anderson model). 4 5 In Fig.
1(a) we show the rms fluctuation of the sample con-
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ductance 5Gi, after an interchange of on-site energies
of one pair of sites, averaged over different rcaliza-
tions of the random energies, as a function of the sam-
ple sizes. The simulated conductance fluctuation
5G& = 0.45(e2//i) is independent of the sample size,
in agreement with the above analytic result. In Fig.
1(b) we show how 5Gi is increased as a strip is
lengthened, a demonstration of the effect of multiple
visits in a quasi one-dimensional geometry. In Fig.
1(c) we plot the "magnetofingerprints, " i.e., the func-
tion G(8) for two configurations which differ only by
the interchange of a single pair. The drastic effect pro-
duced by interchanging two sites out of 1600 is evi-
dent.

We next consider the effect of finit temperature.
We can divide the metal into boxes bounded by L;„,
e.g. , its volume Ob, „ is Lf„ for hypercube and L;2L„
for thin films. At finit temperature, we have to aver-
age the conductance change within each box over an
electron energy spread of order kT4 6 9 It is easy to
show, following Ref. 5, that as a function of electron
energy, the conductance change in a box of size L;„ is
correlated over an energy scale of tr;„'. Provided that
kT )tr;„', we have to reduce the results of Eq. (3) by
the factor (kT7;„/&) '.'2 The conductance change
5 Gi T due to the motion of one impurity in the sample
is given by combining the 5G conductance of each box
classically in series and parallel, and we conclude that
5GiT =SGi(L'/L )(f(h/kTr;„) j' where f(x) =x
for x & 1 and f(x) = 1 for x & 1.

The above picture is applicable as long as L;„& /

which is the same as v
' & r;„' For s.ufficiently

disordered materials, this relation holds up to very
high temperature. '3 For example, at room tempera-
ture, r;„' due to electron-phonon scattering is = kT//i

and the above inequality holds as long as kF/ ( eF/kT.
Furthermore, the temperature reduction factors have a
relatively slow power-law dependence on temperature,
so that the effect of quantum coherence manifested
through the sensitivity to impurity configuration may
be observable at room temperature! This is in contrast
to the magnetofingerprint itself, which is unobservable
at higher temperatures because the magnetic field
necessary to change the conductance in a box becomes
too large. 6

An obvious application of these ideas is to the
phenomenon of 1/f noise. Already, the experimental
observation of discrete conductance jumps in small
metal-oxide-semiconductor field-effect transistors has
been related to 1/f noise in large devices. '0'4 Now we
can make the relationship more general and quantita-
tive. A standard model for 1/f noise is that it mea-
sures the spectrum of resistance fluctuation, i.e.,
&~(ao) =Jdt(5R(r)/iR(0)) e'"'. '5 Resistance fluctua-
tions are thought to be due to thermally activated
motion of defects. Given any model of defect motion,
Sii(co) can be determined. As an illustration, let us

take a model in which each defect hops back and forth
between two sites with a time scale t I. f r ))7;„, and
if the hopping distance is Uncorrelated ~ith t, we can
~rite

S,(~)=~, „~,, / (r)dr,, (SG)'
G co r +I

where p ( r ) is the distribution of the defect motion
time. If the motion is thermally activated with a broad
distribution of activation energies, one obtains an ap-
proximately 1/f spectrum by standard arguments. '5

The magnitude of the noise is proportional to the fluc-
tuation of the total conductance,

(5)

(5G) box box f(g/kT )
SG 0

G2 G2„ IA

'2
&T Ln —2

( ) L (kFL„) pr

The factor 0/Qb, „comes from combining the con-
ductance fluctuation of each box classically. 5Gb,„ is
given by Eq. (3) multiplied by /~/b, „, the number of ac-
tive defects in each box during the experimental time
scale, and &Gb,„ is bounded by e2//i. We note that Eq.
(6) implies dimensional crossover when L;„exceeds
the film's thickness or wire diameter, leading to an
enhancement of the noise over the usual inverse
volume dependence.

Equations (5) and (6) relate the magnitude of the
noise to a microscopic model of defect motion. To our
knowledge, the issue of how the motion of a few de-
fects out of 1020 atoms can lead to observable resis-
tance noise has not been adequately addressed previ-
ously. It is remarkable that according to our theory,
the room-temperature 1/f noise in disordered metals
owes its observability to properties of quantum dif-
fusion on a length scale short compared with L;„.

Finally, the unusual sensitivity of conductance to
atomic motion motion leads us to predict a novel low-
temperature 1/f noise in metallic glasses. At low tem-
peratures the conventional defect migration mechan-
ism is frozen out. However, in metallic glasses we ex-
pect the two-level systems (TLS) to persist down to
very low temperatures. A standard estimate of the
density of experimentally accessible TLS, nT, is 10'9 to
1020 eV ' cm 3. The inelastic diffusion length L;„ in
metallic glasses such as PdSi or NiP is probably of the
order of 1000 A at 100 mK. The elastic mean free
path / in such materials should bc no more than a few
angstroms. Let us consider a thin film. Assuming that
all the TLS within energy kTcontribute to the fluctua-
tion during the experimental time scale, we can esti-
mate the total conductance fluctuation by combining
Eq. (6) with the thin-film version of Eq. (3) and mul-
tiplying by the number of TLS within each box
(nTkTL„L;2), to obtain

I 1

= (k„nr)' (7)
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where we have assumed kT & r;„' and the first factor
comes from a(kFbr) when kFbr && 1. Taking L
=10 A, L„=100A and assumiog hr =0.1 A and
n (eF) = 10z3 eV ' cm ', we estimate SG/G = 10
For wires we expect even larger effects. An interest-
ing feature of result (7) is that the noise level is
predicted to increase with decreasing temperature.
This is because the reduction of the number of TLS is
offset by the thermal average [fin Eq. (6)] and the in-
creasing L;„gives rise to greater sensitivity to atomic
motion. Ultimately the noise level saturates when
L;„~L or when there are no active TLS left in the
fmite sample.

The integrated noise power is given by
fdaoS~(ca) =82(SG/G)2, with (8G/G)2 given by
Eq. (7). The power spectrum itself is constructed with
use of Eq. (5) and the result from TLS theory,
r = to exp [( V/ &ii)' 2] where Vo = h2/(2msr2) = 1 eV,
to = I/coD, and &is the height of the potential barrier
separating the two metastable states of a given TLS.
By standard arguments, 's we see that if & is broadly
distributed on the scale of Vo, which is a rather reason-
able assumption, one should have Sz(oi)~1/co, i.e.,
the power spectrum of TLS-produced conductance
noise should be I/f in form. '6 One also notices that if
the number of active tunneling centers ( = nr kTO), is
of order unity, which is the case for ultrasmall samples
at very low temperature, one should be able to see the
actual "glitches" when a single tunneling event takes
place.

In this Letter we have focused on the application of
our theory to 1/f noise. There are clearly many other
potentially important applications. Examples include
these: (a) Study the time scale of spin-glass and other
glassy phenomenon such as thermal depinning of
charge- and spin-density waves. '7 One can study the
effect of thermal annealing on the magnetofingerprint
of such glassy objects. (b) Study the radiation damage
of small films and wires. At low flux, it should be pos-
sible to observe glitches in the conductance as indivi-
dual o. particles damage the sample. Another possibili-
ty is to study samples in which an occasional P decay
changes the nuclear charge on a single atom which
should lead to a substantial change in the scattering
potential. (c) Study optical and other classical-wave
analogs to the quantum diffusion problem.
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/i/ore added. —After the completion of this work, we
received a paper by Altshuler and Spivak's who also
pointed out the sensitivity of the conductance fluctua-
tion to small configuration changes and applied the
theory to the magnetic field dependence of the spin-
exchange scattering in spin-glasses.
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