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Orientational Phase Transition in the System Pyridine/Ag(111):
A Near-Edge X-Ray-Absorption Fine-Structure Study
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A phase transition has been observed in the system pyridine adsorbed on Ag(111) at 100 K by
near-edge x-ray-absorption fine-structure measurements in real time. At low pyridine coverages an
angle between the ring plane and the surface plane of 45° +5° was observed. This phase converts
sharply at a submonolayer coverage to a phase with an angle between the ring plane and the surface
plane of 70° £5°. Continued exposure gradually leads to a randomly oriented multilayer.

PACS numbers: 68.35.Rh, 68.35.Bs, 78.70.Dm

There is widespread interest in the pyridine-silver
system because of its importance for surface-enhanced
Raman scattering.!=> In particular, some proposed
enhancement models involve charge-transfer excita-
tions from the metal to affinity levels of the adsor-
bate,*> which are also probed by the near-edge x-ray-
absorption fine-structure (NEXAFS) technique.®-
Pyridine (CsHsN) is electronically characterized by a
nitrogen lone-pair orbital. Pyridine chemisorption on
metal surfaces may therefore have model character for
determining the relative contributions of lone-pair and
7 bonding to the chemisorption bond. Here we report
the coverage-dependent molecular orientation of pyri-
dine chemisorbed on Ag(111) at 100 K determined by
NEXAFS.

Demuth, Christmann, and Sanda’® studied the chem-
isorption of pyridine on clean Ag(111) surfaces at
~140 K with vibrational electron-energy-loss
(VEELS) and uv-photoemission spectroscopies (UPS).
They observed a phase transition at about half a mono-
layer coverage from a nearly flat-lying 7-bonded pyri-
dine phase to an inclined N-bonded phase. Similar
coverage-dependent orientational phase transitions
have been obtained by VEELS for pyridine on
Ni(001) 1° and Pt(110).!! Orientational phase transi-
tions also occur as a function of temperature. This has
been shown for pyridine on Ni(001) by VEELS!? and
for pyridine on Pt(111) in a recent NEXAFS study.!?
The NEXAFS measurements on Pt(111) indicated a
low-temperature pyridine state with an apparent angle
between the ring plane and the surface plane of 52°
which converts at T=<300 K to a high-temperature
state with a corresponding tilt angle of 74°. This
result, as well as UPS and electronic EELS data for py-
ridine on Ag(111),131* casts some doubt on the ex-
istence of flat-lying pyridine molecules on well-defined
surfaces at low coverages.

NEXAFS studies on molecules which are only weak-

ly perturbed by chemisorption are particularly useful in
determining the orientation of the molecules relative
to the surface.>® For low-symmetry surfaces this in-
cludes the determination of the azimuthal orienta-
tion.!> The polarization dependence of NEXAFS tran-
sitions is due to the validity of dipole selection rules
for photoabsorption. The analysis of NEXAFS is espe-
cially unambiguous when 7 resonances occur resulting
from transitions of a 1s electron into unfilled anti-
bonding 7 states. These 7 resonances are rather sharp
compared with o shape resonances so that background
subtraction is straightforward. With high-brightness
storage rings and the new generation of grazing-
incidence monochromators, phase transitions which
are characterized by orientational changes can be ob-
served by NEXAFS in real time.

We report here for the first time such a phase transi-
tion measured by NEXAFS in real time during con-
tinuous adsorption of pyridine on Ag(111) at 100 K.
7 and o resonance intensities were analyzed as a func-
tion of the angle between the electric field vector E
and the surface normal. The analysis of the 7 intensi-
ties proved that at low pyridine coverages the ring
plane is tilted by 45° with respect to the surface. Thus
even at low coverages nitrogen lone-pair bonding per-
tains.

The experiments were performed at the Berlin
storage ring for synchrotron radiation, BESSY, with
the plane-grating grazing-incidence monochromator
SX-700'5 with a 1200-lines/mm grating. The data
were taken in the partial electron-yield mode® running
the monochromator with a sweep rate of 30 eV/min.
The spectra shown are background corrected (covered
minus clean). The NEXAFS was studied at the C and
N K edges. The photon energy was calibrated in this
region to an accuracy of +0.5 eV. The x-ray in-
cidence angle on the sample could be varied from near
grazing incidence (6=20°) to normal incidence
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(0=90°). To correct for experimental changes by
varying the incidence conditions, exposure and
photon-flux resonance intensities were normalized by
the height of the underlying atomic adsorption step.°
Two types of experiments were conducted: (a) con-
tinuous NEXAFS measurements for 6=20° and
0 =90° during exposure with pyridine with an expo-
sure rate of ~ 0.1 L/min [1 L (langmuir) =107 Torr
sec] and (b) NEXAFS measurements with fixed doses.
The Ag(111) crystal, mechanically and chemically pol-
ished, was cleaned by Ar* bombardment and subse-
quent annealing at —600 K. Good p(1x1) LEED
patterns were obtained. During exposure and mea-
surement the Ag(111) crystal was held at a tempera-
ture of ~— 100 K.

Characteristic N K-edge NEXAFS spectra of pyri-
dine on Ag(111) are shown in Fig. 1. The main struc-
tures labeled A-D are the same as in benzene NEX-
AFS spectra.!®17 There are two unfilled 7* orbitals in
benzene!® with e,, and b,g symmetry, separated by 3.7
eV, which correspond to peaks A and B, respectively.
In pyridine the degenerate e,, orbital is split by 0.6 eV

Multilayer
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FIG. 1. Nitrogen K-edge NEXAFS spectra of condensed
multilayers (above) and of a monolayer (below) of pyridine
on Ag(111) at 100 K. The monolayer spectra were taken at
normal (#=90°) and at near grazing (0 =20°) x-ray in-
cidence. Four main structures labeled A-D are observed.
For peak assignment see text.
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into two levels of b, and a, symmetry,'® which in this
experiment were not resolved because the monochro-
mator resolution was set at 1.2 eV (N K edge). The
measured energy separation between peaks A and B is
3.8 +£0.2 eV. Peaks A and B show the same polariza-
tion dependence. In the remainder of the paper we
will analyze only peak A and refer to it as the ‘‘m reso-
nance.”” There is no disagreement in the literature
about the assignment of peak D as o resonance. In
inner-shell EELS measurements of benzene!? peak C,
however, was assumed to be a shakeup structure,
whereas recent multiple scattering calculations for ben-
zene!” suggest that peak C is also a o resonance.

The results of the real-time NEXAFS experiments
and the NEXAFS measurements at fixed doses are
shown in Fig. 2. During continuous adsorption of py-
ridine on Ag(111) the normalized 7-resonance inten-
sity for normal incidence, /g, rises drastically between
4 and 5.5 L and steadily decreases at higher doses. A
similar 7-resonance intensity measurement for near
grazing incidence (6 =20°) enabled us to plot the ratio
I0/Iy as a function of dose. I,y/Iy also changes
drastically in the same dose range. Measurements of
the intensity ratio I,o/ Iy at fixed doses between ~— 0.8
and 15 L (multilayer) fit the latter curve perfectly. As
the m-resonance intensity ratio measures the tilt angle
a between the ring plane and the surface (see below),
the results indicate a phase transition characterized by
an orientational change of the pyridine molecules on
the Ag(111) surface as a function of coverage.

The ring plane of pyridine is a nodal plane for the 7
orbitals in this molecule.? As the m-resonance inten-
sity varies with cos’y, where y is the angle between
the vector E and the normal to the nodel plane,® we
can calculate the w-resonance intensity 7, as a func-
tion of the polar angle 6 and of the tilt angle «
between the surface normal and the normal to the ring
plane. If we assume rotational symmetry,!? the follow-
ing expression for radiation with a degree of linear po-
larization P holds:

I« [ P(sin?a sin%0 + 2 cos?a cos?6)

+(1—P)sinfa]. (1)

NEXAFS measurements at fixed doses before (2.3 L)
and after (5.3 L) the phase transitions are shown in
Fig. 3. Fits (full lines) according to Eq. (1) with?
P =0.87 yield tilt angles of a=45° +5° at 2.3 L and
a=70° £5° at 5.3 L. Comparing these results with
the data in Fig. 2 we see that at low pyridine coverages
a constant angle between the ring plane and the sur-
face of a«=45° is measured. This state converts
between about 4 and 5.5 L to a state with approximate-
ly a=70°. Around 5.5 L the intensity ratio I,y/ /g has
a minimum. Continued exposure results in gradually
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FIG. 2. Normalized nitrogen K-edge m-resonance (peak A) intensity for normal incidence (8 =90°), /g (full circles), and
the intensity ratio I,/ Iog (crosses) as a function of dose during permanent adsorption of pyridine ( —0.1 L/min) on Ag(111)
at 100 K. The 75/ 15 data points with error bars were independently measured at fixed pyridine doses. There is a phase transi-

tion near 4.5 L.

n resonance intensity /arb units
sjiun quo/ A}ISU3jUI 3JUDUOSAI L

Z ~
g T
T T I T T T I T T
0 10 20 30 40 50 60 70 80 90
8 /degrees

FIG. 3. Nitrogen K -edge m-resonance intensity (peak A)
for submonolayer coverages (2.3 and 5.3 L) of pyridine on
Ag(111) at 100 K as a function of the angle of incidence, 6.
The full lines are least-squares fits according to Eq. (1)
which yield tilt angles of 45° and 70°, respectively.

increasing values, which finally approach /,o/lgy=1
for a randomly oriented condensed multilayer. We
therefore assign a monolayer to an exposure of ap-
proximately 5.5 L. This is in good agreement with in-
verse photoemission spectroscopy, UPS, and work-
function results'® which indicate a monolayer coverage
for 4.6- to 5.8-L exposure. The phase transition is
thus observed for a submonolayer coverage in agree-
ment with the VEELS data.’

The measured tilt angles are apparent angles
between the molecular plane and the surface plane.
They could result from a single phase or a number of
coexistent phases with well-defined tilt angles. But
they could also result from a phase with pyridine
molecules rotated around their symmetry axis which
has a well-defined inclination angle with respect to the
surface (‘‘rotated’’ model). For the apparent angle of
a=70° all explanations are possible; in the rotated
model the inclination angle would then be 41°. An ap-
parent angle of a =45°, however, would correspond to
an inclination angle of 0, which is physically unreason-
able. For a =45° the rotated model thus cannot be ap-
propriate.

The intensities of peaks C and D (o shape reso-
nance) proved to be constant within *+15% for all
measured polar angles 6 at low and high pyridine cov-
erages. A comparison with the strongly varying o-
resonance intensity of the flat-lying benzene on
Cu(110) and with the weak intensity variation of the
upright standing pyridine on Cu(110) !¢ indicates that
the measured tilt angle of 45° for pyridine on Ag(111)
cannot be due to a ‘““mixture’’ of flat-lying and nearly
perpendicularly oriented molecules.
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The measured tilt angles for pyridine on Ag(111)
compare well with those found by NEXAFS for pyri-
dine on Pt(111).12 Moreover, a recent electron-
stimulated-desorption ion angular distributions study
of pyridine adsorbed on Ir(111) at room temperature??
indicated an angle between the ring plane and the sur-
face of 70° in agreement with the NEXAFS results
mentioned above.

The measured tilt angle for the low-coverage, low-
temperature phase of pyridine on Ag(111) of 45° is at
variance with that indicated by VEELS for pyridine on
Ag(111)° and Ni(001),'° where nearly flat-lying
molecules are suggested. This means that even for the
same system [pyridine/Ag(111)] there is a strong
discrepancy between VEELS and NEXAFS results.

VEELS can determine molecular orientations via
selection rules only if dipole scattering dominates,

which is not always the case.? For the systems pyri-
dine on Ag(111) and Ni(001) it has been shown by
measuring both on and off specular that dipole scatter-
ing dominates for some major spectral features. But
even then exact tilt angles could not be calculated be-
cause of the dependence of the dynamic dipole mo-
ment on the orientation of the molecule relative to the
surface.!'® Further careful VEELS and NEXAFS stud-
ies on identical systems should help to solve the obvi-
ous discrepancies.

In summary, our NEXAFS results show clearly the
existence of a phase transition at a submonolayer cov-
erage in the system pyridine/Ag(111) at 100 K. At
low coverage the ring plane of the pyridine molecules
is tilted by 45° with respect to the surface in contrast to
VEELS results which seem to indicate nearly flat-lying
molecules. Our NEXAFS results suggest, therefore,
that even at low coverages N lone-pair bonding occurs.
At saturation coverage the pyridine molecules are
nearly perpendicularly oriented or rotated around their
symmetry axis which is inclined by 41° with respect to
the surface. It has been shown that NEXAFS can
detect orientational phase transitions in real time.
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