
VOLUME 56, NUMBER 18 PHYSICAL REVIEW LETTERS

Inhibition of Atomic Phase Decays by Squeezed Light: A Direct Effect of Squeezing

C. %. Gardiner
Physics Department, University of 8'aikato, Hamilton„ iVevv Zealand

{Received 22 November 1985)

By reduction of the electromagnetic field fluctations in one quadrature phase, squeezed light can
inhibit the phase decay of an atom. This gives three relaxation times: the usual longitudinal relaxa-
tion time and two different transverse relaxation times, which are inversely proportional to the vari-
ances of the two quadrature phases of the incident light. Kith sufficient reduction of one variance,
the corresponding relaxation time can be made arbitrarily long. The two transverse decay times are
observable in the spectrum of the fluorescent light, thus providing measure of the squeezing in the
incident light.

PACS numbers: 42.50.Dv

The fundamental property of squeezed light is that
of reduced quantum fluctuations in one quadrature
phase. The early works of Yuen and Shapiro' and
Caves, in which squeezed states were first investigat-
ed, have been followed by much activity, which has
been reviewed by Walls. 3 Squeezing has recently been
observed by Slusher et aI. in four-eave mixing in con-
firmation of the predictions of Reid and Walls. s It is
of interest to consider how physical effects of these re-
duced fluctuations might be detected, and in this paper
we shall show that under the influence of squeezed
light, atomic phase decays can be partially suppressed,
and the consequent lengthened lifetime of a decaying
atom can be observed in the spectrum of light
fluorescing from such an atom.

One considers the effect of an incident squeezed vac
uum on a two-level atom. Such a state can (in princi-
ple) be produced by a degenerate parametric amplifier,
whose input is vacuum fluctuations. A detailed treat-

ment of the output field of such a system has been car-
ried out by Gardiner and Savage6 and by Collett and
Gardiner. '

Squeezing is in practice described by several parame-
ters, and in a multimode situation, which we must use
in the case of a traveling-wave input, one of the princi-
pal parameters is the bandwidth over which the light is
squeezed. From Eq. (47) of Ref. 7 we can obtain the
correlation functions of the output light from an ideal
degenerate parametric amplifier. We assume that (a)
the amplifier is in a single-ended cavity, (b) it operates
around a frequency 0, (c) the damping constant of
the cavity is y, (d) the amplification constant is a real,
e & 0, and (e) the input is the vacuum fluctuations.
Taking the Fourier transform of Eq. (47), we find that
the correlation functions for b (t) and b (t), the
positive- and negative-frequency parts of the trav-
eling-wave output field, evaluated at the location of
the atom are stationary, and satisfy

(b(t)) = (b (t)) =0, (b'(t)b(t')) = [(X'—p, ')/Spa]()~e "' ' ~ —pe "~' ' ),

(b(t)b(t')) = [(X'— ')/8ph. ](he t'~' ' +iMe "' ' ')e

~here

A, = 2++6, p, = 2p —6.

If we consider the case of strong amplification and large damping, the exponentials can be replaced by delta func-
tions, and we obtain

(b(t)) = (b'(t)) =0, (b (t)b(t')) =No(t —t'), (b(t)b'(t')) = (lt/+1)5(t —t'),

(b(t)b(t')) =Me '""+' '5(t —t') (b (t)b'(t')) =M e'""+' '5(t —t'),

N = —,
' (X' —p.') ( I/p, ' —I/z'), M = —,

' (x' —p, ') (1/p, '+ I/x'). (4)

{The commutation relation [b (t),b (t ) ] = 5(t —t ) is implicit in (3); this is not exactly true, but is a reasonable
approximation when only frequencies in a bandwidth about 0 which is small compared with 0 are considered. In
order to avoid confusion, we emphasize that b(t) is a field operator evaluated at the position of the atom. The
Fourier components of b (t) each correspond to a mode of the incoming field. See Refs. 6 and 7 for a detailed ex-
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planation. } This is what we have called squeezed white noise in Ref. 7. It will be valid to use (3) instead of (1) as
long as the time constants of any system driven by the squeezed light are significantly longer than both I/X and

I/p, . In general, squeezed white noise does not require M = M', but a phase choise can always be made to fix M to
be real and positive, and I shall do so in the remainder of this paper. By noting that ([b(r)+gb (t)]
x [h (r) + X'b(r)]) is positive for all A, , one readily deduces that

)M ('» N (N+ I).
The equality is in fact achieved from the output of an ideal degenerate parametric amplifier, as can be deduced
from Eq. (4), and indeed it is possible simultaneously to have N ~. (How well these can be realized in practice
is a matter of current investigation. )

If we choose M to be real and positive in this case, the quadrature phases are most conveniently chosen as

X(t) = [b (t)e ' '+b(t)e'n']/2, Y(t) = [b (t)e '"'—b(r)e'n']/2i,

and the correlation functions are

(X (r)X (r') = —,
' (N + M + —,

'
) S(t —r') —(N + —,

' )5(r —r') if N —~ and M = [N (N + 1)]'i',

(Y(r) Y(r')) = —,'(N+ —,
' —M)5(r —r') —1/16N if N oo and M=[N(N+1)]'2.

(7)

Thus, in the limit considered in Eq. (7), we see that
the fluctuations in the quadrature phase Y(r) can be
made as small as one pleases.

If one shines such light on a two-level atom whose
transition frequency is 0, the effect of the fluctua-
tions on the Bloch vector will be felt only by that com-
ponent of the Bloch vector in phase with X(t); the
component in phase with Y(r) will feel fluctuations
which can be arbitrarily small.

The decay of a two-level atom consists of two parts:
polarization decay and inversion decay. The polariza-
tion decays as the result of field fluctuations gradually
randomizing the phase of the 81och vector, whereas
the inversion decay is related to the radiation of pho-
tons into space.

If we squeeze the input light we can reduce the fluc-
tuations in one quadrature phase, and that component
of the polarization which is in phase with the low-noise
quadrature phase will feel reduced fluctuations, and
not decay as fast as the other, which will feel increased
fluctuations.

The formalism developed by Gardiner and Collett
is well adapted to the treatment of this problem, since
the properties (2) are those of quantum white noise,
for which a formalism is developed in that paper. Let

1 0

,
0 —1 '

0 15'= oo
0 0

5 =IO (8)

coupled to the electromagnetic field. The Hamiltonian
ls

0= Hsys + Hem + Hint~

Hcm= h
~

dQlcob (Gl)h(co),Jo
(9)

In writing (9) I make the electric dipole approximation
and the rotating-wave approximation. The dipole mo-
ment K (co) is assumed smooth around co = 0, and 0
is sufficiently large that the lower limit of the integrals
in (9) can be considered to be essentially —~. Collett
and Gardiner derive a master equation for the atomic
density operator p for the situation in which the in-
coming light is squeezed quantum white noise; this is
(in a frame rotating at frequency 0 )

us consider a two-level system described by spin
operators

dp/dt = —,
' y(N + l)(25 pS+ —S+5 p

—pS+5 ) + —,
' yN(25+ pS —5 S+p

—pS 5+ )

——,
' yM (2S+pS+ —5+S+p

—pS+S+ ) ——,
' yM'(25 pS —S S p

—pS S ).

Here

(10)

This equation is valid provided the bandwidth of the ~q~eezed white noise is substantially larger than y. If
we define

s'-= —,'(s„+Is,),
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then we find equations of motion for the means of S„,
S~, and S, to be

(S„)= -y(N+M+-, ')(S„)= -y„(S„),
(Sy) = —y(N —M+ —,

' )(Sy) = —yy(Sy), (13)

(S,) = -y(2N+»(S, ) -y= -y, (S,) -y
The quantities N and M can be varied independently

in principle, though for the ideal squeezed input (such
as is produced from a DPA), N and M are connected
by the relation

M = [N(N+ I)]'t'.
We can see therefore that for large squeezing both y,
and y„become large. In fact pz and &y are proportion-
al to the coefficients of intensity of the respective qua-

drature phases of the input, as defined in Eq. (7).

Since this noise can approach zero in the Y quadrature
phase, it is clear that the decay constant y~ can be as
small as we please, while at the same time y„becomes
extremely large. Thus in a time scale short compared
with y~ ', but substantially larger than y„' and y, ',
we find

(S„)—0, (S,) ——I/(2N + I ), (14)
while (S~) is essentially unchanged. Thus the projec-
tion of the original orientation of the Bloch vector on
the direction of the low-noise quadrature phase is
preserved —nevertheless the inversion (S,) decays
rapidly to its stationary value.

To detect this effect one can look at the spectrum of
the fluorescent light. According to the quantum re-
gression theorem, and standard methods connected
with it, the stationary correlation functions of the
atom are

(S+ (t)S (0) ) = —,
' [N/(2N + 1) ][exp( —y„t) + exp( —y t ) ],

(S (t)S+ (0)) = —,
' [(N + 1)/(2N + 1) ] [exp( —y„t ) + exp( —y t ) ]„

(S+(t)S+(0)) = —,
' [(N+ I)/(2N+1)][exp( y„t) —e—xp( —y, t)],

(S (t)S (0) ) = —,
' [N/(2N + 1)] [exp( —y„t ) —exp( —y t ) ].

The abo ve has been formulated in the case that there is one input and one output channel. In the case of in-
teraction of light with an atom, this is realistic if we view the channels as corresponding to the various partial
waves, since only the electric dipole partial wave (corresponding to the electric dipole approximation) interacts ap-
preciably with the atom If the experiment can be carried out with a squeezed electric dipole wave, then the output
would be of the same kind. We will not attempt a consideration of how this might be achieved in practice, though
schemes involving parabolic mirrors come to mind immediately.

In this case the amplitude correlation function of the fluorescent light (whose Fourier transform is the spec-
trum) is computed from the boundary condition

b.„,(t) =Wys-(t)+b(t),
which is derived in Ref. 6. We find

(b.'„,«)b.„,(0)) =No(t)+yu«)([S (t),NS-(0)-MS (0)])

(16)

+ yu ( —t) ( [NS+ (t) —MS (t),S (0) ]) +y (S+(t)S (0)) (17)

[where u (t) = 0, t ( 0; u (t) = 1, t )0]. This correlation function contains elements arising from the input corre-
lation function [N5(t) ] and elements from the atom itself—arising because the fluorescent light consists of a radi-
ated part and a reflected part. With use of (11) and (13), the correlation function becomes

(b,„,(t)b,„,(0)) = NS(t) + —,
' [yM/(2N + 1)][exp(—y~t) —exp( —y„t)],

which displays the characteristic decay constants.
The spectrum obtained by the Fourier transform of

(18) consists of a flat background, from 5(t), plus a
negative peak of width y„(which will be very broad),
and finally a positive peak of width y~, which can be as
narro~ as we please. Such narrowing is an effect
which can only be produced by some reduction of
noise, i.e., squeezing. The narrowed width is in fact
directly proportional to the squeezing, and thus pro-
vides a measurement of squeezing.

One might prefer to use plane ~aves as an input, but
in fact most of the squeezing effect is then lost. For I
characterize the state of the three-dimensional input
field by operators b; (n, t ) such that

[b, (n, t), b, (n', t')] = 8(n, n')5(t —t')5,,
(b, '(n, t)b, (n', t')) = N, (n, n')h(t —t')5,,5,, (19)

(b(n, t)b(n', t')) =M, (n, n')S(t —t')S,tS,,
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Here n and n' are unit vectors, 8(n, n') is the delta
function on the unit sphere, and the operators b; (n, t)
are Fourier transforms with respect to the frequency of
free-wave input destruction operators with a given
direction of propagation n. The indices i and j are po-
larization indices, and I is the particular polarization
which is squeezed. The functions Xl and Ml charac-
terize the squeezing, and are in principle arbitrary.

The annihilation operator corresponding to a square
normalized wave function ft(n) is

~, ( t) = d'n f,'(n)b, (n, t). (20)

The case in which only this direction is squeezed is
given by

N, (n, n ) =f, (n)f, (n )N, ,

7„- [7.( N+M-+,') +( -I&)-,'j,

yy 7t [e(N —M+ —,
'

) + (1 —e) —,
' ].

(23)

Mt(n, n') =ft'(n)ft(n')Mt,
since in this case

(A (t)A, (t')) =5(t-t')N, ,

(W, (t)W, (t')) =8(t —t')M, ,

and similar averages corresponding to all orthogonal
functions vanish.

The corresponding parameters to Nt and Mt in (22)
which would arise from the operator B (t) correspond-
ing to a wave function g (n) are obtained by multiply-
ing N and M in (22) by I f d tt ft (n) g (n) I .

This can be a considerable reduction. For example
if ft (n) corresponds to an almost plane wave which in-
cludes only directions n confined to a solid angle 0
with equal amplitude, while g(n) corresponds on elec-
tric dipole wave, i.e., one which is of order of magni-
tude (4n ) 't2 on the unit sphere, then this overlap
factor is of order of magnitude 0/4m which is vanish-
ingly small as 0 0, corresponding to a plane wave.
In order, therefore, to utilize squeezing effectively, 0
must be as close to 4n as possible.

If the experiment is done with an incoming wave
that is not a perfect electric dipole, then the effect of
multiplying M and N by the factor e =

~ f dn ft (n)
&& g (n) ~' is to yield

The term proportional to 1 —e in both these expres-
sions represents the input of vacuum fluctuations from
those modes in the electric dipole wave other than the
input mode. Unless e is very close to 1, these can
completely mask the effect. The production of a
squeezed electric dipole incident wave will therefore
be an important component of the experimental verifi-
cation of this effect, unless it is found possible to set
up a genuine one-dimensional experiment. This
would involve the manufacture of an appropriate
waveguide, at whose termination one would locate the
two-level atom. This might be difficult at visible
wavelengths, though it might be possible at the
wavelengths corresponding to transitions in Rydberg
atoms.

In practice the light will not be perfectly delta corre-
lated, but the analysis will be valid provided the input
squeezing bandwidth is larger than y„, y„, and y, .
This can be achieved in principle in four-wave mix-
ing. 'o It will therefore be relevant to find ways of
computing the effects of finite squeezing bandwidth.

I would like to thank Craig Savage for conversations
which led me to consider this problem, and Dan Walls
for his enlightment on certain points.

&H. P. Yuen, Phys. Rev. A 13, 2226 (1976); H. P. Yuen
and J. H. Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978),
and 26, 78 (1980).

2C. M. Caves, Phys. Rev. D 26, 1817 (1982).
3D. F. Walls, Nature (London) 306, 141 (1983).
4R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and

J. F. Valley, to be published.
5M. D. Reid and D. F. Walls, Phys. Rev. A 31, 1622

(1985).
6C. W. Gardiner and C. M. Savage, Opt. Commun. 50,

173 (1984).
7M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386

(1984).
SC. %'. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761

(1985).
9C. W. Gardiner, Handbook of Stochastic Methods

(Springer, Berlin, 19S3), Chap. 10.
IOD. F. Walls and A. S. Lane, private communication.


