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Effect of Surface Ionization on Wetting Layers
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We generalize a surface ionization model due to Langmuir to liquid mixtures of polar and nonpo-
lar components in contact with ionizable substrates. When a predominantly nonpolar mixture is
near a miscibility gap, thick wetting layers of the conjugate polar phase form on the substrate. Such
charged layers can be much thicker than similar wetting layers stabilized by dispersion forces. This
model may explain the 0.4- to 0.6-um-thick wetting layers formed in stirred mixtures of ni-
tromethane and carbon disulfide in contact with glass.

PACS numbers: 68.15.+e, 68.45.Gd, 82.65.Fr, 87.20.Cn

In a beautiful paper in 1938, Langmuir' developed a
model that is the basis for our present understanding
of thick wetting layers of liquid water that form on
glass in contact with slightly undersaturated water va-
por. The model arose from a calculation of the forces
between identically charged plates immersed in an
electrolyte solution with Debye screening length large
compared to the plate spacing. The results apply by
analogy to a single plate of glass in contact with under-
saturated water vapor in the case where chemical
groups on the surface of the glass can dissociate. If
hydroxyl groups dissociate (an element of our model),
they leave the surface with a negative surface charge
density. The associated counterions, in this case sol-
vated protons, distribute themselves in a layer of
liquid water at the surface in accordance with the
Poisson-Boltzmann equation. The concentration of
ions at the liquid-vapor surface of the water layer
determines the equilibrium vapor pressure of the
layer. As the layer thickens, this concentration de-
creases and the vapor pressure of the layer rises until it
equals the ambient pressure of the undersaturated wa-
ter vapor. I denote the thickness of the wetting layer
by d and measure the undersaturation of the vapor by
L, the height of the plate above the location of bulk
coexistence of liquid and vapor water. The formula
derived by Langmuir then takes the form

d = (kT/ze) (m2eey/2ApgL)"?, )]

where kT is Boltzmann’s constant times the absolute
temperature, z is the ionic valence, e is the electronic
charge, € is the dielectric constant of water, € is the
permittivity of free space, Ap is the mass density
difference between liquid and vapor, and g is the gravi-
tational acceleration. (I use SI units throughout.) A
remarkable feature of the Langmuir formula is that it
contains no adjustable parameters. With the values
T=300 K, e=80, z=1, g=9.8 m?-s~!, Ap=1000
kg'm~3, and L =102 m, we find a typical equilibri-
um layer thickness of d=0.15 um, a result which has
been confirmed experimentally by Derjaguin and
Churaev? and by Pashley and Kitchener.

It is clear that the forces that give rise to wetting

layers 0.15 wm thick must be very long ranged. That d
varies as L~ Y2 shows that these forces are of even
longer range than dispersion forces,* which would give
the dependence L~Y3 or L~V*, depending on whether
or not retardation effects are taken into account.
Indeed, the thickness of the water layer predicted’® by
the theory of dispersion forces without retardation is 4
nm for L =10"2 m, only 3% of the thickness estimat-
ed above and observed experimentally! Many recent
measurements of the thicknesses of wetting layers in
binary liquid mixtures have in fact given thicknesses
that cannot be explained by the theory of dispersion
forces. My primary goal is to provide an alternative
mechanism to dispersion forces, which, up to now,
have been the focus of all the attention. While some
of the observed thicknesses might be consequences of
nonequilibrium effects,® 1 shall argue that in other
cases the surface-ionization mechanism is dominant.
Let us consider the situation in Fig. 1, where two
liquid phases of a binary mixture are in equilibrium at
a height L above the substrate at the bottom. Let us
assume that the lighter phase (8) consists mostly of a
polar component, and the denser phase (a) mostly of
a nonpolar component. Let us assume throughout that
there is no added electrolyte and a sufficiently small
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FIG. 1. A binary liquid mixture in contact with an ioniz-
able substrate near a miscibility gap of the mixture. Wetting
layers of phase 8 form when proximity to 8 favors ioniza-
tion of the substrate.
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concentration of electrolyte impurities to make the
Debye screening length in the mixture much larger
than the thickness of the wetting layer. For all practi-
cal purposes, the Debye length is infinite. Just as for
the case of wetting layers of liquid water, we find that
surface ionization of the substrate can lead to thick
wetting layers of the 8 phase, much thicker than can
be reconciled with the theory of dispersion forces. We
also find that wetting layers can form even when
dispersion forces attract the « phase in preference to
the B phase. Later, I discuss some recent experi-
ments’ on nitromethane—carbon disulfide mixtures in
contact with glass which might constitute an example
of just such a case. A further possibility that emerges
from the analysis is that wetting layers stabilized by
surface ionization can disappear abruptly as the tem-
perature is increased toward a consolute point. I note
that this theory is the first for surface ionization in
nonaqueous systems.

I now outline a derivation of a generalization of the
Langmuir equation that is applicable to the situation in
Fig. 1 and reduces to Eq. (1) in a limiting case. Let us
assume that the charge density on the surface of the
substrate has a value o less than zero, and adopt a
coordinate system in which x is measured upward from
the substrate. The fluid side of the wetting layer is
then located at x =d. Electrical neutrality of the sys-
tem requires that

ze [ n(x)ax= -0, @)

where n(x) is the number density of counterions at
height x above the substrate and z is their valence.
The electric potential, ¢ (x), must be continuous and
must satisfy Poisson’s equation in both the 8-like layer
and in the macroscopic a phase outside. Let us as-
sume that the « phase occupies the entire region
x > d; this causes a negligible error in the potential
when L >> d. Thus,
—egeqd’ (x) =zeng(x), d>x=0, @

—€,€00" (x) =zen,(x), x> d,

where the primes denote differentiation with respect to
x. Let us assume that the counterion number densities
are given by Boltzmann distributions,

ng(x) = ng(d)exp{—zeld(x) — ¢ (d)1/kT},
N (x) = n,(dexpl—zeldp(x) —d(d) 1/ kT}.

Combining these with Eq. (3) we obtain the usual
Poisson-Boltzmann equations for the potentials. The
compositions of the a« and 8 phases are assumed to be
unaltered by the dissolution of counterions from the
substrate surface. To complete the specification of the
problem we need to specify the boundary conditions.
In place of Eq. (2) I use

—egegd’ (0) =0 &)

(4)
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I also require that ¢'(x) vanish at infinity and that the
x component of the electric displacement be continu-
ousat x=d:

b (d—)=ed'(d+). 6)

Finally, let us specify the relative solubilities of the
counterions in the @ and B phases in local equilibrium
at x =d. Simply write

ng(d)/ ng(d) = f, (7

where 0= f=<1. If we set f=0 we recover the Lang-
muir model, which has vanishing electric field at the
edge of the wetting layer and zero ion concentration
outside. Nonzero values of f mean that ions can
‘““leak’” out of the B layer into the a phase, an effect
that leads to a decrease in the thickness of the layer.
After decreasing monotonically from a large value at
the substrate surface, the counterion number density
is discontinuous at x = d.

Two relations useful in solving for ¢(x) and n(x)
are obtained by differentiation of Eq. (4) with respect
to x, followed by use of Egs. (3) and (4) and reintegra-
tion with respect to x:

- _ o? €8€0 ' 2
ng(x) = ng(0) [2€B€0kT 57 ' (012
d>x=0,
_ €4€0 , 2
N (x) 2kT][¢ (07, x>d (8)

With these and Egs. (6) and (7) we find
ng(0) — (0%/2egegkT) = ng(d) (1 — fe,/eg).  (9)
With this and Egs. (3) and (8) one can derive

F'(x)=—2%"F(x), d>x=0,

F'(0=0, x>d (10)
where

F(x)=explzed(x)/2kT], (1)

Z2=d"22e’ng(d) (1 — fe,/€g)/2€geokT. 12

These equations are easily solved and ng(d) and the
constants of integration calculated from the boundary
conditions. We find that ng(d) is determined by Eq.
(12) and the transcendental equation

Z=tan"[(X— /(XY +1)], (13)
where

X=(0d/D/Z, (14)

|=2kTegeg/ze o], (15)

Y=1[(fe./€g)/(1— fe,/€g) 12, (16)
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The quantity /is a characteristic length.

I display the forms of ¢'(x) and n(x) for the case of
a single fluid in contact with an ionizable substrate
(f=1,eg=¢€,=¢):

&' (x)=(Q2kT/ze)/ (1 +x), an
n(x) = (2eegkT/22e?)/ (1 + x)2. (18)

These dependences illustrate the long-range nature of
unscreened electrostatic interactions.

To calculate the equilibrium layer thickness let us
first consider the configuration in Fig. 1 without gravi-
ty. The pressures in the 3 layer and in the a phase are
then constant but unequal. By ‘‘pressure’’ I mean the
xx component of the pressure tensor. The pressure in
the B layer over that in the a phase is given by

[= [ng(d) — no () 1KT
——‘zﬂ{eﬁw(d—)12—e.,[¢'(d+)12}. (19)

The first term is the difference between the ideal-gas
pressures of the counterions at x = d and the second is
the difference between the xx components of the
Maxwell stress tensor. We can use Egs. (8) and (9) to
rewrite II in the form

= ng(d)(1— fe,/eg) kT. (20)

Let us identify the constant pressure in the a phase
with po, the pressure at the upper «-8 interface. The
constant pressure in the 8 layer is then py+1II, and it is
clear that in the absence of gravity the layer would be
infinitely thick. Let us now consider the effects of
gravity on the pressures in the a and 8 phases at x =d.
The pressure in the a phase becomes py+ p,gL, while
that in the B layer is given by po+1I1+pggl. Here p,
and pg are the mass densities of the bulk a and B
phases. The equilibrium layer thickness d (L) is deter-
mined by requiring that these two pressures be equal.
With Egs. (12)-(16) we obtain our principal result:

d=Dtan"'[(D—-YD/(DY+ D], 1)
where
D = (2kT/mze) (megeo/20pgL ) V2. (22)

D is 2/m times the thickness in Eq. (1) and Ap=p,
—pg. Nonzero values of f (or, equivalently, Y) are
important when the « and 8 phases are similar, as oc-
curs near consolute points. Note that 4 will vanish if
D — Yl vanishes below a consolute point. The effects
of dispersion forces can be included by addition of a
term — A/6md® to I, where A4 is the Hamaker con-
stant.?

For water layers on glass we can set ¥ =0 and eg=¢€
in Eq. (21), and assume that D >> [ This gives the
Langmuir thickness, d=mD/2, which is therefore

valid when either the layer thickness or the surface
charge density is sufficiently large. To check the con-
dition D >> I, let us assume that the surface charge
arises from dissociation of hydroxyl groups on the
glass. The dissociation reaction and equilibrium con-
stant are given by

OHsurf“ Os_urf +H* ’ (23)
Keq=[0g ] [H* 1/[OHg,], (24)

where [H* ] is the molar concentration at the substrate
surface. For n(0) >> n(d), Eq. (9) implies that
103No[H* 1= A%0}/2e€gkT, where N, is Avogadro’s
number. We have put o = Ao, with A the fraction of
hydroxyl groups dissociated and o the charge density
on a completely ionized surface’: o= —4.6e
nm~2= —0.74 C m~2. For A << 1 we can also write
[05s)/[OHg s =A/(1—A) = A. With these results
Eq. (23) implies that

A =10(2e€gNokTK oo/ 7§) /3. (25)

To estimate A we take’ —logjolK.y/(1 mol dm=3)]
=6.8, T=300 K, and e=80. This gives A=0.0010.
Even in water the degree of dissociation is rather
small. The length /in Eq. (15) now has the value 50
nm, and with the result d=0.15 um (L=10"2 m)
one finds D/I=2. This simple dissociation model
therefore gives a surface charge density not quite large
enough to justify the Langmuir limit. The value of d
calculated directly from Eq. (21) is 0.10 um.

Wetting layers 0.4-0.6 wm thick have been observed
in continuously stirred mixtures of nitromethane and
carbon disulfide in contact with borosilicate glass.’
The B phase in these mixtures is rich in nitromethane
(the polar component), and the « phase is rich in car-
bon disulfide. The measurements of such thick layers
cannot be reconciled with the theory of van der Waals
forces in any case. Moreover, the Hamaker constant
for the system ‘‘glass-8-a’” must be negative for stable
wetting layers of phase 8 (with the sign convention of
Refs. 4 and 8), but calculations based on the
Dzyaloshinskii-Lifshitz-Pitaevskii theory* show that it
is positive: The preferred order of the phases is there-
fore ‘‘glass-a-B8.”’ 1 will argue that the very thick wet-
ting layers are caused by the combined effects of sur-
face ionization and continuous stirring. Only the mea-
surements made at coexistence 3 K or more below the
consolute point at T, =335 K are considered here.

The sign of the Hamaker constant was determined
by evaluation of F(d) in Eq. (4.13) of Ref. 4, where
F(d)d® is a generalized Hamaker constant that in-
cludes retardation and nonadditivity of intermolecular
forces. It was found that F(d) was positive for all
values of d. I plan to publish the details of these calcu-
lations elsewhere.! The Dzyaloshinskii-Lifshitz-
Pitaevskii theory should apply to the thick films ob-
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served far from 7, because the observed thicknesses
are much larger than the range of correlations in the
mixture. The required inputs are the frequency-
dependent dielectric constants of the glass, «, and 8
phases. I used the Clausius-Mosotti relation and data
from the literature to construct Ninham-Parsegian
representations with ultraviolet frequencies deter-
mined by Cauchy plots.® The sign of F(d) was insen-
sitive to large changes in the input frequencies. F(d)
also remained positive but increased in magnitude
when lower-energy resonances were used. This pri-
marily reflects the fact that the polarizabilities of phase
a, phase B, and glass, respectively, are not ordered
monotonically at zero frequency.

As noted above, the mixtures were subjected to con-
tinuous gentle stirring at the upper «-8 interface (see
Fig. 1). The stirring rates Q were sufficiently slow
(Q =27 rad-s~!) that the interface waved but did
not break up.” It has been shown in an idealized
model® that stirring moves the effective plane of bulk
two-phase coexistence (the upper a8 interface) closer
to the wetting layer by a factor L/Ley. Leg, which is
identified with the thickness of the diffusion boundary
layer near the substrate surface, is given by

Lgg=D3vieq =172, (26)

D, is the mutual diffusion coefficient in the « phase
and v, is its kinematic viscosity. With D,=10"°
m?-s™! v,=10"% m?2-s7! and Q=2m rad-s”!, we
obtain L. ;=40 um. Stirring can clearly lead to small
effective values of L.

To apply the surface ionization model let us set
f=0 and estimate several properties at 7=325.10 K
((T—-T,)/T,=—0.03]. With the mixture data of
Greer er all' and data for the pure components we
find €,=3.2, g=9.7, Ap=100 kg -m~3. To calculate
A let us use

Keq(B) = Keqexpl(E/kT)(e7'—eg )], (27)

where K., and € have the values assumed earlier for
water. FE is the energy of an O—H bond. With
E=Ny'500 kJ-mol~! we obtain A=1.9x1076,
This degree of dissociation is s that obtained for wa-
ter and illustrates the extreme sensitivity of surface
ionization to the dielectric constant of the neighboring
fluid. For og=—0.74 C m~2 and L =L =40 um
we obtain d=0.9 um. This result shows that stirring
combined with surface ionization can lead to very thick
wetting layers. A nonzero value of fwould reduce the
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estimate of 4, but f at this temperature is very small
because of the large difference between €, and eg.
Without stirring we set L =10"2 m and obtain a wet-
ting layer of thickness d =4.0 nm. It is likely that van
der Waals forces favoring the ‘‘glass-a-8’’ ordering of
the phases would destabilize such a thin wetting layer.
This suggests the possibility of a transition from wet-
ting to nonwetting as the stirring rate is decreased.

We may note that the data of Wu, Schlossman, and
Franck’ imply that d varies as (T — T,) ~ Y% with T as
one approaches the a-8 phase boundary at 7= T,.
This behavior is consistent with a wetting layer stabi-
lized by retarded van der Waals forces. I have not
been able to reconcile this result, particularly the am-
plitude of the power law, with either the theory
presented here or the theory of dispersion forces.

In conclusion, wetting layers stabilized by surface
ionization can exhibit complex behavior as a function
of temperature because of ‘‘leakage’’ (nonzero values
of /) and because of the exponential dependence of A
on €g. Added salt, variation of pH, and chemical al-
teration of the substrate surface can be used to control
the surface ionization mechanism.
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